
LIBREOFFICE IN YOUR BROWSER

WEBASSEMBLY & OTHER NEAT HACKS TO MAKE THAT HAPPEN

oSLO virtual conference, 2020-10-15



Who’s talking?

Thorsten Behrens – thorsten.behrens@cib.de
● with CIB since 2015 – built the LibreOffice team 

here

● one of the LibreOffice forkers/founders, and on 
the TDF board

● working with LibreOffice/OpenOffice code since 
2001

● Hacker, computer scientist, fighting for Open 
Source and Open Standards



3

The State of the Art (LOOL)

● HTML5-canvas based browser version
● lightweight, tiled rendering
● the heavy lifting happens on the server

– all documents of all users loaded there
– all rendering & editing happens in the data center

● Pros:
– light on the client
– documents stay on-premise
– ~easy collaborative editing – just one document instance

● Cons:
– no offline mode
– expensive to host
– no peer2peer editing, or end2end encryption possible



Pricing & TCO for LOOL

● for running LOOL professionally, you have
– cost of licensing (and support)
– cost of operation

● staff / maintenance / user support
● cost of hosting

– real-world needs (per actively working user):
– 2-10 active users per CPU thread
– 100MB per active user (if working on larger documents)

● same order of magnitude as lightweight app virtualisation
– so that’s around 50-100 USD per average active user and year (license, support, 

and most importantly AWS bill)



Pain points of LOOL’s architecture

● price of hosting
● price of hosting
● and: price of hosting

– ad-based ARPU industry average is <0.50 USD per year!
– ARPU for Facebook is around 7.3 USD per year (and the 

largest)
● also no offline mode, bandwidth & latency requirements :-)



So what now?



LibreOffice WebAssembly – LWA

● Instead, looking at the trajectories of hardware (mobile/laptop)
– your phone: CPUs with 8 core, up to 2GHz; 12GB RAM on the high-end
– Ultrabooks with 32GB and 12-thread i7... 

● do what we did even since before 2000 – port the core to a new architecture!
– the new platform is … the browser!
– WASM – compile native code to run in your browser
– W3C standard since end of 2019 – WASM core

● where
– use LibreOffice core
– cross-compile to WASM (like we do for Android, iOS, Windows ARM etc)
– use platform APIs whereever feasible (crypto, IO, network)

https://www.w3.org/TR/2019/REC-wasm-core-1-20191205/


Project plan & timeline

● Yes, this is an announcement :)



Project plan & timeline (2)

● hope to start next month
– with getting a cross-build going

● by the end of the year, latest FOSDEM
– „1st pixel rendered“

● by Summer next year
– edit text in Writer

● MVP Writer / e2e editing of documents within one year



Archictecture

● we tried that – it didn’t work?!
– we gave up, as in 2015 emscripten/WASM couldn’t even do exceptions properly

● stars are aligned now
– W3C standard, wide browser support
– nothing missing really (except perhaps threading)
– we know the market, there’s demand

● What needs doing?

1) low-level cross building

2) port big blobs to use browser APIs (NSS, I look at you!) 

3) strip down the monolith (target only Writer for a start)



Challenges

● Challenge – size of the binary
– likely not feasible to load 100MB of WASM & survive

● Single-threaded
– multi-threading is still experimental
– then again, Writer is single-threaded since 1990

● Heap size
– only 2GB (max) with current mem model, so we really need 

to put LibreOffice on a diet



Misc notes

● this is pure-play opensource
● no separate repo – all happens in core
● over time, this will grow JS GUI code, but that should be all 

below core (like android is already)



CIB
IDEAS WITH A SYSTEM

OUR PRODUCTS:
https://libreoffice.cib.de

https://libreoffice.cib.de/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 18

