
  

Required  
Magic
advanced technology

Static composition analysis of 
containers, virtual machines and 

other root filesystems

For provenance, license and vulnerabilities



Introduction: Philippe Ombredanne

● Weird facts and claims to fame
– Signed off the largest deletion of source lines in the linux kernel (but these 

were only comments)
– Repenting code hoarder (only 20K forks)

● Maintainer of FOSS tools for FOSS code analysis
– ScanCode and AboutCode

● Co-founder of SPDX, ClearlyDefined
● long time GSoC mentor
● Co-founder and CTO of nexB Inc.
● pom@nexb.com or pombredanne@gmail.com
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The problem with containers (1)
● A container is essentially a kernel-less root filesystem

– But more than a single rootfs, this is actually many rootfs
– One for each "layer" in a union filesystem

● Each layer
– can have similar duplicated or updated packages and files
– may contain a whole userland

● with system packages (multiple versions)
● with application packages (multiple versions)
● with extra files added and copied from undetermined 

origins
– 1000's of these



The problem with containers (2)

● Many (many) packages and then some more
– mostly pre-built binaries
– base image builders may bypass signature checks for distro 

packages
– images binaries are built on top of image binaries built on top of 

binaries packages
● Not always a clear provenance and license

– Package metadata are not enough or not present
– Sometimes doc or metadata are removed to keep things smaller

● Lack of traceability



The problem with containers (3)
● Using piles of unknown binaries is not ideal

– If his is open source code, where is the source?
– What's the license?
– What are the known vulnerabilities or bugs?

● With so many pre-built binaries of unknown provenance, then 
what's to love in that ??

● Unknown, weirdly-licensed, buggy or vulnerable 
code will sneak in easily

● So why do we use containers in the first place then?
– We, developers, are lazy!
– Convenience beats everything and this is very convenient



How to solve the issue
● In the future, we will have fully vetted, traceable 

containers with reproducible builds
– One day, hopefully

● For now, "software composition analysis" is the way
– Find ALL the packages
– Then, trace back ALL the files to determine 

provenance
– Then, find the licenses.
– Then, find the vulnerabilities.

● Done.



Ideal solution

● Free, open source and open data of course
● Guarantee that ALL files in an image are vetted

– Not a mere inventory of packages and documented licenses

● Scriptable tool that is easy to customize
– There is no one tool to rule them all so you need to easily include and 

plugin new tools and scripts

● Bonus: do it without running containers with a pure static 
analysis
– simpler installation and runtime
– and avoid the "observer effect" by NOT running inside the container 

you analyze



Composition analysis pipeline
▷ Prepare image, determine distro
▷ For each image layer: scan system packages

○ Find their file and check if modified

▷ For remaining files: scan application packages
○ All ScanCode-supported package types (ruby, go, 

npm, maven, composer, etc.)
○ Find their file and check if modified 

▷ For remaining files: scan files
○ All files, including binaries

▷ Finally, analyze remainder
○ Dispose of temp and transient or log files and more



Layers and  Union filesystem
● The layers are slices of rootfs "layered" on top of each other 

using a union filesystem (AUFS, overlayFS)
● Rather than requiring the availability of the FS drivers for 

these the approach is to either:
– Analyze a squashed image where the layers are overlayed 

reproducing the procedure using the union FS, but without the 
need for a driver

– Analyze layer by layer, and check what was analyzed in the 
previous layers to avoid duplicate

● Both implemented in the container-inspector library



What's your linux distro?
● /etc/os-release is the best way

– Older distro-specific ways are not worth it

● But some containers have no "distro"
– e.g. minimal busybox-based userland base images and 

nothing else
– "distroless" images are more or less based on Debian but 

are not exactly Debian.

● The discovered distro drives what installed system 
packages DB are checked for



Scan installed system packages

Read directly installed package databases

● On Debian distros /var/lib/dpkg/status and info/
– RFC-822 Email-like format with .md5sums and .list file lists
– distroless use a partial Debian-like db

● On RPM distros /var/lib/rpm/Packages
– A binary blob in either BDB hash, sqlite DB or own ndb dbm-like (SUSE anyone?)
– Older or new Fedora and derivative and openSUSE each use a different database format

● On Alpine /lib/apk/db/installed
– RFC-822 Email-like, close to but not Debian



System packages of other distro

● Scan installed system packages for other distro can 
be derived easily from existing distro handlers

● For instance, close to home with openSUSE RPMs
– the installed database is using BDB in the past and NDB going forward
– This will come with the upcoming RPM support using a special librpm build

● For instance, with archlinux
– with pacman, each installed package has a dest file with metadata and 

mtree+files listings

– There are existing parsers



Scan application packages

● Only on the subset of files that are NOT part of system packages
● Use package manifests, lock files and package installation conventions 

to detect installed packages. For instance:
– python site-packages
– npm nested node_modules tree
– Maven Jars
– installed Rubygems
– etc....

● Use scancode-toolkit scanners with many parsers
● For each, collect the set of installed files



What if a package lies about its 
files? 

● We should trust but verify
● Verify either with:

– "built-in" crypto and signatures
– lookup in a database of known packages and files

● A lookup is easier
– The open database of all the package files is in the works (a subset 

focused on licensing is already available through  ClearCode project)
– Lookup by checksum



Scan for remaining files

● Only on the subset of files that are NOT part of system 
packages or application packages

● Use ScanCode-toolkit scanners for license and origin clues

● For files with no explicit origin and licenses, lookup in a database

● As noted before, an open database of all the package files 
is in the works (a subset focused on licensing is already 
available through  ClearCode project)

● Lookup by checksum



Finally...

● The leftover subset of files that are neither from system nor application 
packages and cannot be traced to some known provenance 
are ...suspicious files!

● Some are transient database, temp or log files with well known locations, 
filetype and content

● The rest need to be subject to extra analysis

● Introspect binaries for origin clues
– DWARF symbols, ELF symbols, C++ demangling, Strings or reversing
– In the future, lookup in a database of symbols, signatures and strings TBD
– Or YARA rules?



What about license and 
vulnerabilities?

● License is derived from package metadata and scans of the 
source code (using best in class ScanCode-toolkit scanner)

● Vulnerabilities are found thanks to the new VulnerableCode 
aggregated and open source database of known vulnerabilities
– lookup is done using PackageURLs (a project derived from 

Scancode and VulnerableCode and adopted by OWASP and many 
more)

– for system and application packages (and more than just the NVD)
– possibly YARA rules too in the future



Architecture
●Server to host pipelines execution and data storage:

–Python, Django, PostgreSQL
●Each composition analysis is a pipeline

–Scripting customizable with resume/restart
●Minimal API-only JSON, almost no UI beyond basic CRUD

–ScanCode.io + ScanPipe for end-to-end pipeline scripting and execution
–ScanCode toolkit for license and application package detection
–NetFlix's Metaflow ml/data science workflow engine
–container-inspector library for container image processing
–Debut for Debian, Alpine (and soon RPM and distroless) for system package
–VulnerableCode for vulnerabilities lookup
–PackageURL to identify packages



Alternative tools

● Open source with Tern, Trivy, Clair, Anchore
● Several commercial but none with similar feature sets
● Except for Tern (that also uses Scancode and debut) they typically focus only 

on security and have little or no support for file origin, license and other 
metadata tracing

● Typically less coverage of application packages and little or limited support to 
trace which file belong to a package

● Typically require to mount the image as a union filesystem and/or to run the original 
package managers in a container. Most of them require Docker to be installed and run 
themselves inside a Docker image too. This requires a more involved setup and runtime.



Status
▷ Base architecture is in place ~ 70% complete

○ For Debian, Ubuntu and Alpine done, RPM-based, distroless distros 
are next

▷ container-inspector library for images complete

▷ debut library for Debian parsing complete

▷ rpm-inspector library for RPM under development
▷ scancode-toolkit support for installed Debian & alpine WIP

▷ scancode-toolkit parsers for application packages complete

▷ vulnerablecode DB is WIP, about 70% complete
▷ PackageUrl library complete 



About nexB

▷ Focused on FOSS compliance since 2007
▷ Hybrid solution for FOSS governance

○ Business applications for Legal/Business
○ Open source tools for Developers
○ APIs in-between

▷ Overview of our FOSS projects at 
www.aboutcode.org 

▷ Our FOSS tools are at https://github.com/nexB 
▷ Co-founders of SPDX - http://spdx.org/ 
▷ Co-founders of ClearlyDefined - 

https://clearlydefined.io/  

http://www.aboutcode.org/
https://github.com/nexB
http://spdx.org/
https://clearlydefined.io/
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