
Can MicroOS Desktop Be Your
"Daily Driver" ?

(SPOILER ALERT: Probably YES!)

Dario Faggioli, dfaggioli@suse.com

mailto:dfaggioli@suse.com

Can It Really Be ?

Proof that it can is:

● The first part of this talk is also covered by this blog post

https://dariofaggioli.wordpress.com/2020/10/16/opensuse-microos-as-your-desktop-install/

About Me What I do

● Virtualization Specialist Sw. Eng. @ SUSE since 2018, working on Xen, KVM, QEMU,
mostly about performance related stuff

● Daily activities ⇒ how and what for I use my workstation
○ Read and send emails (Evolution, git-send-email, stg mail, ...)
○ Write, build & test code (Xen, KVM, Libvirt, QEMU)
○ Work with the Open Build Service (OBS)
○ Browse Web
○ Meetings / Video calls / Online conferences
○ Chat, work and personal
○ Occasionally play games
○ Occasional video-editing
○ Maybe scan / print some document

● Can all of the above be done with MicroOS already ?

What is MicroOS

● Immutable single purpose OS, based on Tumbleweed, born as container host but not
limited to that use case
○ https://microos.opensuse.org/
○ https://en.opensuse.org/Portal:MicroOS
○ Richard’s and Ish’s talks!

https://youtu.be/8gGjcKdOWIc

https://youtu.be/nIwqzGbX-oc

https://microos.opensuse.org/
https://en.opensuse.org/Portal:MicroOS
https://youtu.be/8gGjcKdOWIc
https://youtu.be/nIwqzGbX-oc

What is MicroOS as a Desktop

● MicroOS ⇒ Single purpose immutable OS
● Each install does only one thing:

○ One thing == Hosting containers
○ One thing == Hosting VMs
○ One thing == Set Top Box
○ One thing == Your Desktop

■ More talks from Richard
■ The latest one, yesterday!

XXX oSLO CONF 2020 TALK XXX

https://youtu.be/ASSkQH9kNa0

https://youtu.be/7p4y9Meyy0M https://youtu.be/cZLckDUDYjw

https://youtu.be/ASSkQH9kNa0
https://youtu.be/7p4y9Meyy0M
https://youtu.be/cZLckDUDYjw

How I Got Involved

● SUSE Hack Week 19 (which happened in 2020)
○ Chance for SUSE employees to work on do whatever they find cool

● MicroOS as a Desktop
○ Immutable, taking

advantage of BTRFS
○ Base OS from distro,

apps from other
(proper?) sources

○ Rolling base, as based
on Tumbleweed

○ Rolling but reliable…
as based on
Tumbleweed

● I found it cool! :-)
○ Tried and tested it
○ Started hacking on

toolbox (see later)
 (https://hackweek.suse.com/projects/microos-desktop)

https://hackweek.suse.com/projects/microos-desktop

Why I Tried and Why I’m Liking it

● A relatively small and immutable base OS
○ Stable and reliable
○ Immutable ⇒ much more difficult to mess-up

● Issues with package dependencies:
<<Oh, no!! X can’t be installed/upgraded because libY needed by Z is too old>>
○ Fewer packages ⇒ a lot less likely to happen (in fact, never happened in months…)

● BTRFS at its finest:
○ Updates in non-running snapshots. Automatic rollback with health-check

● Apps from Flatpak/Flathub
○ Contributed to Flathub directly from upstream app developers

■ ⇒ Effort done once, multiple (all?) distro can profit from that
■ ⇒ Distro/OS developers can focus on OS, app developers can focus on apps

● Tumbleweed is rock solid, thanks to OpenQA, etc
○ As soon as you add an additional repository, this may change ...

■ Technically you’re not using the distro that has been developed & tested any longer
■ (In practice, fine, especially for Packman, etc. But, still.)

○ Here you don’t need any additional repository !

https://github.com/kubic-project/health-checker

Installing

● Just grab it: https://microos.opensuse.org/ , and install it!
● Choose “MicroOS Desktop [GNOME] [ALPHA]”
● Choose “KDE Plasma” if you want, but I’ve never tested it. No idea if/how it works!

https://microos.opensuse.org/

Immediately After Installing

● Add FlatHub as flatpak remote
○ $ flatpak remote-add --user flathub https://flathub.org/repo/flathub.flatpakrepo

● Some GNOME Software (black) magic:
○ $ gsettings set org.gnome.software install-bundles-system-wide false

$ gsettings set org.gnome.software allow-updates false
$ gsettings set org.gnome.software download-updates false
$ gsettings set org.gnome.software enable-repos-dialog false
$ gsettings set org.gnome.software first-run true

● Some zypper (black) magic:
○ $ sudo rm -Rf /var/cache/app-info

$ sudo transactional-update shell
 # rpm -e --nodeps libzypp-plugin-appdata
 # zypper al libzypp-plugin-appdata
 # exit
$ sudo reboot

● Shouldn’t this should all be done automatically?
○ Indeed ! Patches / SRs welcome :-P

https://flathub.org/repo/flathub.flatpakrepo

Some More Customization

● For toolbox (see later)
○ # echo "<yourusername>:100000:65536" > /etc/subuid

echo "<yourusername>:100000:65536" > /etc/subgid

● I want passwordless sudo
○ # usermod -a -G wheel <yourusername>

echo "%wheel ALL = (root) NOPASSWD:ALL" > /etc/sudoers.d/wheel

● I want to disable automatic updating and rebooting
○ I will deal with updating (and rebooting) manually

■ $ sudo systemctl disable --now transactional-update.timer
$ sudo systemctl disable --now rebootmgr.service

○ Let’s check:
■ $ sudo rebootmgrctl is-active

RebootMgr is dead
$ sudo rebootmgrctl status
Error: The name org.opensuse.RebootMgr was not provided by any .service
files

Should be done automatically too, IMO.
Again, contributions welcome!

Additional Repositories & Packages

● Add repositories, e.g. Packman:
○ openSUSE Wiki: Additional package repositories
○ All of Packman:

■ zypper ar -cfp 90
http://ftp.gwdg.de/pub/linux/misc/packman/suse/openSUSE_Tumbleweed/ packman

○ Install codecs
● Add <more repositories>
● Install <a lot of packages for whatever I need>

Right?

https://en.opensuse.org/Additional_package_repositories
http://ftp.gwdg.de/pub/linux/misc/packman/suse/openSUSE_Tumbleweed/

Additional Repositories & Packages

● Add repositories, e.g. Packman:
○ https://en.opensuse.org/Additional_package_repositories
○ All of Packman:

■ zypper ar -cfp 90
http://ftp.gwdg.de/pub/linux/misc/packman/suse/openSUSE_Tumbleweed/
packman

○ Install codecs
● Add <more repositories>
● Install <a lot of packages for whatever I need>

Right?

https://en.opensuse.org/Additional_package_repositories

Installing Packages

● No zypper (well, it’s there but it’s locked ⇒ try it, it won’t work!)
● Transactional-update , directly:

○ $ sudo transactional update pkg install wget unzip
$ sudo reboot

● transactional-update , via shell:
○ $ sudo transactional-update shell

 # zypper ref
 # zypper in wget unzip
 # exit
$ sudo reboot

● Multiple sessions:
○ $ sudo transactional -update pkg install wget

[...]
$ sudo transactional-update shell --continue
 # zypper in unzip
 # exit
$ sudo reboot

● Reboot always necessary, for seeing and using new packages: The Transactional Update Guide

https://youtu.be/e3_X7v7aoHk

https://kubic.opensuse.org/documentation/transactional-update-guide/transactional-update.html
https://youtu.be/e3_X7v7aoHk

Are We Constantly Rebooting ?

● Nah!
○ For instance, I haven’t rebooted this workstation since 3 days and 16 hours (and

counting!)

● How so?
○ For apps:

■ Flatpak (from Flathub, https://flathub.org/)
○ For troubleshooting / debugging:

■ toolbox
○ For development

■ toolbox
○ For “development & apps”:

■ toolbox

● Installing/removing activities RPMs on the base OS tends to zero

https://flathub.org/

Flatpak

● It will be our main install source,
for all applications

● Via GNOME Software
○ Once configured as shown

● Via cli
○ flatpak install org.gnome.gedit

alias gedit=’flatpak run org.gnome.gedit’

Toolbox

● A shell script that launches a privileged container
○ Check: https://kubic.opensuse.org/blog/2019-10-22-toolbox/
○ Most other immutable OSes has something similar (e.g., Silverblue)
○ The host file system will be visible/accessible while inside the container (bind mounts, etc)

● The container can run:
○ As root

■ You may or may not have your regular user in the toolbox container
■ When you are root in the toolbox container run as root, you’re kind of root on the host

○ As your regular user
■ Thanks to “rootless podman”
■ You have your regular user in the toolbox container
■ Even when you are root in the toolbox container, you are not root on the host

● BEWARE: “privileged container” & ”can run as root”
○ It’s not a security enhancing tool
○ I.e.: <<I can do whatever I want, I’m in a container, I won’t affect or disrupt the base OS, right?>>

■ No, this is not the right mindset
○ You’re not less secure or safe than when you’re working directly on the base OS
○ You’re not more secure or safe either!

https://kubic.opensuse.org/blog/2019-10-22-toolbox/
https://docs.fedoraproject.org/en-US/fedora-silverblue/toolbox/
https://developers.redhat.com/blog/2020/09/25/rootless-containers-with-podman-the-basics/

Different Kind of Toolbox-es

● Creating and entering a toolbox that runs as your user, and be your own user while inside it:
○ Useful for using toolbox as your user / developer environment
○ $ toolbox -u # -u ⇒ you will have your user, your /home, etc

 > # you’re inside the toolbox already!
○ $ toolbox -u -t foo # -t ⇒ to give this toolbox a name (‘t’ for ‘tag’)

 > # you’re now inside the toolbox tagged ‘foo’
 > sudo su # you’re becoming root in container. But, e.g., you still
 #> # won’t be able to touch files owned by root on the host!

● Creating and entering a toolbox that runs as your user, but has only root user inside it:
○ Useful for using toolbox as a debugging and troubleshooting environment
○ $ toolbox # no -u ⇒ no user except root, nothing in /home

 #> # your are root already. But root in toolbox
 #> # does not map on root on the host

Different Kind of Toolbox-es

● Creating and entering a toolbox that run as root, and be your own user while inside it:
○ Useful for using toolbox as your user / developer environment (that needs “special powers”)
○ $ toolbox -r -u # -u ⇒ you will have your user, your /home, etc

 > # -r ⇒ the toolbox run as root on the host
○ $ toolbox -r -u -t foo # -t ⇒ to give this toolbox a name (‘t’ for ‘tag’)

 > # you’re now inside the toolbox tagged ‘foo’
 > sudo su # you’re becoming root in container and that maps with
 #> # root on the hosr (you’ll be able to touch files owned
 #> # by root on the host, etc)

● Creating and entering a toolbox that runs as root, and has only root user root inside it:
○ Useful for using toolbox as a debugging/troubleshooting environment (with “special powers”)
○ $ toolbox -r # -r ⇒ the toolbox run as root on the host

 #> # no -u ⇒ no user except root, nothing in /home. Also,
 #> # your are root already, and that does map with root on the host

Managing Your Toolbox-es

● Toolbox is stateful:
○ Yesterday you created a toolbox, and you install stuff, change configs, etc
○ Today you stop the toolbox, you turn off the PC and take the day off
○ Tomorrow toolbox will still have all the software and all the config changes you made

● Listing toolbox-es running as user:
○ $ podman ps

CONTAINER ID IMAGE COMMAND CREATED STATUS NAMES
5cb19ade1fb1 [...]toolbox:latest sleep +Inf 3 weeks ago Up 3 hours ago toolbox-dario-user

● Listing all toolbox-es created as user (running ot not):
○ $ posman ps --all

CONTAINER ID IMAGE COMMAND CREATED STATUS NAMES
5cb19ade1fb1 [...]toolbox:latest sleep +Inf 3 weeks ago Up 3 hours toolbox-dario-user
502722d98390 [...]toolbox:latest sleep +Inf 3 weeks ago Exited toolbox-dario-user-dev

● For toolbox-es created as root:
○ $ sudo podman ps # list the running ones
○ Sudo podman ps --all # list all of them

● Removing toolbox-es:
○ $ podman rm <toolbox_name/ID> # for a toolbox running as user
○ $ sudo podman rm <toolbox_name/ID> # for a toolbox running as root

Toolbox For TroubleShooting

Toolbox is super handy for debugging and troubleshooting
● Example: you need to do a strace ls

■ You can try… but strace is not installed!
■ Install it with transactional-update pkg in and then reboot ?!?
■ No!

● $ toolbox # runs as your user on the host (no -r)
 #> zypper in strace # you’re root in toolbox, but that
 # does not map to root on the host
 #> strace ls # here you go your strace!

● Example, you need to nmap some host
■ Again, nmap is not there, and you don’t want to reboot!
■ Nmap needs “real root”, to scan low ports

● $ toolbox -r # runs as root on the host (-r)
 #> zypper install nmap # we can add packages, no problem
 #> nmap -sS 192.168.0.2 # you’re root in toolbox and that
 <...> # does map to root on the host

Toolbox Config File

● Some tweaking possible (and more possibilities of tweaking being worked on ;-P)
● Config file:

○ $ cat ~/.toolboxrc
REGISTRY=registry.opensuse.org
IMAGE=opensuse/toolbox:latest
TOOLBOX_NAME=special-debug-container
TOOLBOX_SHELL="/bin/bash"

●
● TOOLBOX_NAME: allows to tweak the basename of the toolbox-es
● REGISTRY + IMAGE: allows to use a different image for your toolbox-es

○ toolbox/latest is based on Tumbleweed
○ You can have Leap toolbox-es
○ You can make toolbox-es from your (Kiwi / OBS built) images
○ You can have toolbox-es based on different distros!

■ (possible already, but needs a little more work for dealing well with -u)

https://osinside.github.io/kiwi/
https://build.opensuse.org/

Toolbox for Graphical Apps

● They work too! ⇒ No need installing them in base OS
● $ toolbot -u

 > sudo zypper in gedit virt-manager
 > gedit
 > virt-manager

Errr… What?

Toolbox for Graphical Apps

● They work too! ⇒ No need installing them in base OS
● $ toolbot -u

 > sudo zypper in gedit virt-manager
 > sudo zypper in xorg-x11-fonts-core
 > sudo zypper in adwaita-icon-theme
 > gedit
 > virt-manager

Ok, now we’re
 Talking

(are we missing some deps
somewhere, maybe?)

Toolbox for “GL” Graphical Apps

● Kernelshark as an example:
○ $ toolbox -u

 > kernelshark
 libGL error: No matching fbConfigs or visuals found
 libGL error: failed to load driver: swrast
 QOpenGLWidget: Failed to create context
 QOpenGLWidget: Failed to create context
 qt.qpa.backingstore: composeAndFlush: QOpenGLContext creation failed
 qt.qpa.backingstore: composeAndFlush: makeCurrent() failed
 ...

● I have NVIDIA with proprietary drivers here. What if…
○ $ toolbox

 > sudo zypper addrepo https://download.nvidia.com/opensuse/tumbleweed NVIDIA
 > sudo zypper ref
 > sudo zypper in x11-video-nvidiaG05

● It installs stuff like:
○ kernel-default-devel , nvidia-gfxG05-kmp-default , nvidia-glG05 …
○ … Inside the container ?

https://download.nvidia.com/opensuse/tumbleweed

Toolbox for “GL” Graphical Apps

● Kernelshark as an example:
○ $ toolbox -u

 > kernelshark
 libGL error: No matching fbConfigs or visuals found
 libGL error: failed to load driver: swrast
 QOpenGLWidget: Failed to create context
 QOpenGLWidget: Failed to create context
 qt.qpa.backingstore: composeAndFlush: QOpenGLContext creation failed
 qt.qpa.backingstore: composeAndFlush: makeCurrent() failed
 ...

● What if…
○ $ toolbox

 > sudo zypper addrepo https://download.nvidia.com/opensuse/tumbleweed NVIDIA
 > sudo zypper ref
 > sudo zypper in x11-video-nvidiaG05

● Install stuff like:
○ kernel-default-devel, nvidia-gfxG05-kmp-default, nvidia-glG05 …
○ … Inside the container ?

Well, it works!

https://download.nvidia.com/opensuse/tumbleweed

Remember this?

● Virtualization Specialist Sw. Eng. @ SUSE since 2018, working on Xen, KVM, QEMU,
mostly about performance related stuff

● Daily activities ⇒ how and what for I use my workstation
○ Read and send emails (Evolution, git-send-email, stg mail, ...)
○ Write, build & test code (Xen, KVM, Libvirt, QEMU)
○ Work with the Open Build Service (OBS)
○ Browse Web
○ Meetings / Video calls / Online conferences
○ Chat, work and personal
○ Occasionally play games
○ Occasional video-editing
○ Maybe scan / print some document

● Can all of the above be done with MicroOS already ?

Email, Calendaring, IM & Office Apps

● Mail, calendaring, contacts, ...
○ Evolution, org.gnome.Evolution
○ Calendar, org.gnome.Calendar
○ Contacts, org.gnome.Contacts
○ GNOME Clocks, org.gnome.clocks
○ Weather, org.gnome.Weather

● Documents
○ Evince, org.gnome.Evince
○ GNOME Documents, org.gnome.Documents
○ LibreOffice, org.libreoffice.LibreOffice

● Messaging
○ RocketChat, chat.rocket.RocketChat
○ Pidgin, im.pidgin.Pidgin
○ Telegram, org.telegram.desktop
○ Signal, org.signal.Signal

https://flathub.org/apps/details/org.gnome.Evolution
https://flathub.org/apps/details/org.gnome.Calendar
https://flathub.org/apps/details/org.gnome.Contacts
https://flathub.org/apps/details/org.gnome.clocks
https://flathub.org/apps/details/org.gnome.Weather
https://flathub.org/apps/details/org.gnome.Evince
https://flathub.org/apps/details/org.gnome.Documents
https://flathub.org/apps/details/org.libreoffice.LibreOffice
https://flathub.org/apps/details/chat.rocket.RocketChat
https://flathub.org/apps/details/im.pidgin.Pidgin
https://flathub.org/apps/details/org.telegram.desktop
https://flathub.org/apps/details/org.signal.Signal

Editors, Tools, Graphics

● Editors:
○ Vim, org.vim.Vim
○ Gedit, org.gnome.gedit
○ Setzer, org.cvfosammmm.Setzer
○ Eclipse, org.eclipse.Java

● Graphics
○ GIMP, org.gimp.GIMP
○ Krita, org.kde.krita
○ Blender, org.blender.Blender

● VMs:
○ GNOME Boxes, org.gnome.Boxes

● Tools:
○ Regex Tester,com.github.artemanufrij.regextester
○ Meld, org.gnome.meld
○ Boop-GTK,uk.co.mrbenshef.Boop-GTK

https://flathub.org/apps/details/org.vim.Vim
https://flathub.org/apps/details/org.gnome.gedit
https://flathub.org/apps/details/org.cvfosammmm.Setzer
https://flathub.org/apps/details/org.eclipse.Java
https://flathub.org/apps/details/org.gimp.GIMP
https://flathub.org/apps/details/org.kde.krita
https://flathub.org/apps/details/org.blender.Blender
https://flathub.org/apps/details/org.gnome.Boxes
https://flathub.org/apps/details/com.github.artemanufrij.regextester
https://flathub.org/apps/details/org.gnome.meld
https://flathub.org/apps/details/uk.co.mrbenshef.Boop-GTK

Utilities, Configuration

● Misc utilities:
○ SyncThing, me.kozec.syncthingtk
○ Barrier, com.github.debauchee.barrier
○ Seahorse, org.gnome.seahorse.Application

● Config:
○ Dconf Editor, ca.desrt.dconf-editor
○ Flatseal, com.github.tchx84.Flatseal
○ GPU-Viewer, io.github.arunsivaramanneo.GPUViewer

https://flathub.org/apps/details/me.kozec.syncthingtk
https://flathub.org/apps/details/com.github.debauchee.barrier
https://flathub.org/apps/details/org.gnome.seahorse.Application
https://flathub.org/apps/details/ca.desrt.dconf-editor
https://flathub.org/apps/details/com.github.tchx84.Flatseal
https://flathub.org/apps/details/io.github.arunsivaramanneo.GPUViewer

Browsing

● Firefox, from the Flatpak (org.mozilla.firefox)
○ Works great, including video codecs

(and without having to add Packman repos)
● Epiphany (GNOME Web, org.gnome.Epiphany)
● Chrome[ium]

○ There is no Flatpak for that yes
(but no, but it’s being worked on)

○ Installed in the base OS, with
Transactional-update (and reboot)

● NB: GNOME Shell Extension can’t be installed
from a “Flatpak-ed” browser yet
○ You probably need at least one browser

in the base OS (I have Chrome)

https://flathub.org/apps/details/org.mozilla.firefox
https://flathub.org/apps/details/org.gnome.Epiphany
https://github.com/flathub/com.google.Chrome

Gaming

● Steam, com.valvesoftware.Steam
○ Works great, even

SteamPlay/Proton

● NVIDIA Drivers
○ $ sudo transactional-update shell

 # zypper ar --refresh https://download.nvidia.com/opensuse/tumbleweed NVIDIA
 # zypper in nvidia-glG05 x11-video-nvidiaG05
 # exit
$ sudo reboot

○ Brings in gcc and some development
packages (not ideal... Thanks NVIDIA, I guess :-/)

● NB flatpak picked up automatically:
org.freedesktop.Platform.GL.nvidia-450-66
org.freedesktop.Platform.GL32.nvidia-450-66

https://flathub.org/apps/details/com.valvesoftware.Steam
https://download.nvidia.com/opensuse/tumbleweed

Video: Viewing, Editing & Codecs

● Remember: we did not add Packman

● VLC, org.videolan.VLC
○ Has the proper codecs

● Pitivi, org.pitivi.Pitivi
○ Has the proper codecs

● Openshot, org.openshot.OpenShot
○ Has the proper codecs

● Cheese, org.gnome.Cheese
○ Works well with my webcam

https://flathub.org/apps/details/org.videolan.VLC
https://flathub.org/apps/details/org.pitivi.Pitivi
https://flathub.org/apps/details/org.openshot.OpenShot
https://flathub.org/apps/details/org.gnome.Cheese

Printing & Scanning

● Printing
○ By default: no cups, no PPDs, …
○ Tried installing (transactional-update)
○ It works!
○ OBS request 840921
○ Should just work for everyone now

● Scanning
○ By default: no sane packages
○ Tried installing

(transactional-update)
○ Flatpak apps (e.g., Paper) don’t work yet
○ Still working on it
○ (yeah, most scanners, e.g., from all-in-one

printers, have Web-ish interface. But still)

https://build.opensuse.org/request/show/840921

● Virtualization Specialist Sw. Eng. @ SUSE since 2018, working on Xen, KVM, QEMU,
mostly about performance related stuff

● Daily activities ⇒ how and what for I use my workstation
○ Read and send emails (Evolution, git-send-email, stg mail, ...) Check
○ Write, build & test code (Xen, KVM, Libvirt, QEMU)
○ Work with the Open Build Service (OBS)
○ Browse Web Check
○ Meetings / Video calls / Online conferences Check
○ Chat, work and personal Check
○ Occasionally play games Check
○ Occasional video-editing Check
○ Maybe scan / print some document Check

● Can all of the above be done with MicroOS already ?

Remember this?^2

Hacking On, E.g., QEMU

● Dependencies for building QEMU from sources:
○ bc bison bluez-devel brlapi-devel bzip2 ccache clang cyrus-sasl-devel flex gcc gcc-c++

gettext-tools git glib2-devel glusterfs-devel gtk3-devel gtkglext-devel gzip hostname libSDL2-devel
libaio-devel libasan4 libcap-devel libcap-ng-devel libcurl-devel libfdt-devel libgcrypt-devel
libgnutls-devel libjpeg62-devel libnettle-devel libnuma-devel libpixman-1-0-devel libpng16-devel
librbd-devel libseccomp-devel libspice-server-devel libssh-devel libssh2-devel libtasn1-devel
libudev-devel libxml2-devel lzo-devel make makeinfo multipath-tools-devel ncurses-devel perl
pkg-config python3 python3-PyYAML python3-Sphinx rdma-core-devel snappy-devel sparse tar
usbredir-devel virglrenderer-devel vte-devel which xen-devel zlib-devel

○ You don’t want to install them with transactional-update and reboot
○ Oh, you forgot one / there is a new one needed:

■ Install with transactional-update and reboot again?
○ Do try! I promise that it won’t be funny :-/

● Toolbox to the rescue:
○ $ toolbox -u -t dev # -r may or may not be needed. Generally not for building

 > sudo zypper in <all_the_dependencies_above>
 > cd <your QEMU sources directory in your home (it’s there in the toolbox!)>
 > <do your changes>
 > <build it>

https://www.qemu.org/

Working With OBS

Requires installing packages, using VMs for building, etc.
● toolbox , what else ?!
● I need a -r one, for mounting filesystems in the build VM (I think)

$ toolbox -u -r -t dev
 > zypper ar https://download.opensuse.org/[...]/openSUSE_Tumbleweed/openSUSE:Tools.repo
 > zypper in cpio osc build [...]
 > osc mkpac / co / vc
 > [...]
 > osc vc
 > osc build --vm-type=kvm
 > osc commit

Building outside of VMs
currently not working
● (but it’s better to

build In VMs anyway…)

https://download.opensuse.org/repositories/openSUSE:/Tools/openSUSE_Tumbleweed/openSUSE:Tools.repo

Working on Libvirt and QEMU

Real scenario:
● I make a change in QEMU
● I make a change in Libvirt
● I want to build and also test my changes

How it works for me:
1. I work on the changes themselves inside my development toolbox
2. Still in there, I start my modified libvirtd , make it listed on TCP (no socket activation)

○ $ toolbox -r -u -t dev
 $> <work on QEMU> && <build QEMU> && <install my QEMU>
 $> <work on libvirt> && <build libvirt> && <install my libvirt>
 $> sudo ./build/src/virtlogd &
 $> sudo ./build/src/libvirtd -v -l

3. From (either the same or a different) toolbox I start virsh and/or virt-manager and
connect to my modified libvirtd

○ $ toolbox -u # this is my user/dev apps toolbox
 $> virsh --connect=qemu+tcp://localhost/system
 $> virsh # list --all
 Id Name State

 - Tumbleweed shut off

Working on Libvirt and QEMU

libvirtd running in a tmux session
running inside my `toolbox -r -u -t dev`

Virt-manager running in my
`toolbox -u` and connecting
to libvirtd in the other
toolbox

VM started by virt-manager
in the `toolbox -u`. It’s actually
running inside `toolbox -r -u -t
dev, using my modified Libvirt
and QEMU

A Day in the Life of a Developer who
Uses MicroOS as Workstation...

● I hacked on toolbox in such a way that:
○ With toolbox -u and/or toolbox -r -u:

■ You have your user inside the toolbox
■ You have your home, in its usual place
■ Your files have the proper owner, group, permissions
■ You reach your SSH agent (running on the host)
■ You can launch graphical apps
■ You have sudo

● Also:
○ With -t, you can have multiple toolbox-es, e.g.:

■ One per each project you’re working on?
■ One for work projects and one for home projects?
■ One for … … ...

● IOW: It’s a quite cool development environment
○ I adopted it even on Tumbleweed, before moving to MicroOS!

A Day in the Life of a Developer who
Uses MicroOS as Workstation...

My morning routine:
1. Wake-up / wake-up the kids / have breakfast with them / bring them to school ;-P
2. Brew some more coffee
3. Open gnome-terminal
4. Enter a toolbox -r -u -t dev (brings me inside toolbox-dario-user-dev)
5. Start tmux inside that toolbox

a. all panes will be inside the toolbox already!
b. Stay in there until end of day

6. Maybe, enter my toolbox -u (brings me inside toolbox-dario-user)
a. Use some apps from there that I need but don’t want to install in the base OS

7. <<Hey network to the office seems slow!>>
a. $ toolbox -r

 #> zypper in traceroute
 #> traceroute www.suse.com

8. … … ...

http://www.suse.com

Some Stats

● RPM Packages
○ On my MicroOS Desktop: ~1000

■ But I’ve done a few experiments, added stuff, …
○ In a development toolbox on my MicroOS Desktop: ~1300

● No Desktop Environment packages
● But with some GUI apps & libs

○ On a stock Fedora Silverblue: ~1200
○ On a Tumbleweed box I also have: ~3500

■ Not used for development (so no -devel pkgs)
■ A few apps as flatpak there as well

● Flatpaks
○ Apps installed: 68
○ All flatpaks (including runtimes): 110
○ Disk space: 12 GB

Example: Nautilus, Trash, USB Keys,
From “not working” to “it works!”

Problem:
● Nautilus was looking weird (showing all BTRFS subvolumes, etc)
● Trash was not working

○ Files going in .local/share/Trash
○ Not being shown when clicking on “Trash” icon

● USB keys not being (auto)mounted, /run/media/<user> not appearing
Let’s try something...
● Mounting USB keys in /run/<user>/<volume> ⇒ it’s udisks2
● On a Tumbleweed:

○ ps aux | grep udisk ⇒
/usr/libexec/gvfs/gvfs-udisks2-volume-monitor
/usr/libexec/udisks2/udisksd

○ rpm -qf ⇒
gvfs-backends-1.44.1-2.4.x86_64
udisks2-2.8.4-1.3.x86_64

Example: Nautilus, Trash, USB Keys

● Let’s fix it!
○ $ sudo transactional-update pkg in gvfs-backends udisks2

$ sudo reboot
● It works!
● OBS request 840921
● Should just work for everyone

now

https://build.opensuse.org/request/show/840921

Conclusions

● Using MicroOS as a Desktop / Workstation is already possible, IME
○ Requires some manual fiddling with configurations, but it’s mostly something done

right after install and then forgotten
● It’s pretty comfortable to use

○ In fact, I started using it just as an experiment. But I’m definitely staying!
● It pushes you to do things properly

○ No quick-&-dirty hacks, like symlinking that library to make that other app work
○ Results is a much cleaner and stable system

● It’s not perfect yet:
● It asks for a password too many times, post install manual config steps should be done

automatically, we may want to have a GUI way for updating the base OS (like Silverblue
does), etc.

● It needs you! As a user, as a tester, as a contributor, as an “evangelist”, as...
Well, whatever you want to do, you’re welcome!

About Myself

● Ph.D on Real-Time Scheduling, SCHED_DEADLINE

● 2011, Sr. Software Engineer @ Citrix
The Xen-Project, hypervisor internals,
NUMA-aware scheduler, Credit2 scheduler,
Xen scheduler maintainer

● 2018, Virtualization Software Engineer @ SUSE
Still Xen, but also KVM, QEMU, Libvirt;
Scheduling, VM’s virtual topology,
performance evaluation & tuning

https://www.kernel.org/doc/html/latest/scheduler/sched-deadline.html?highlight=sched_deadline
https://xenproject.org/
https://www.suse.com/
https://www.linux-kvm.org/page/Main_Page
https://www.qemu.org/
https://libvirt.org/index.html

All text and image content in this document is licensed under the Creative Commons Attribution-Share Alike 4.0 License (unless otherwise specified).
“LibreOffice” and “The Document Foundation” are registered trademarks. Their respective logos and icons are subject to international copyright laws.
The use of these thereof is subject to trademark policy.

Finish

Thank You

