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Can It Really Be ?

Proof that it can is:

● The first part of this talk is also covered by this blog post

https://dariofaggioli.wordpress.com/2020/10/16/opensuse-microos-as-your-desktop-install/


About Me What I do

● Virtualization Specialist Sw. Eng. @ SUSE since 2018, working on Xen, KVM, QEMU, 
mostly about performance related stuff

● Daily activities ⇒ how and what for I use my workstation
○ Read and send emails (Evolution, git-send-email, stg mail, ...)
○ Write, build & test code (Xen, KVM, Libvirt, QEMU)
○ Work with the Open Build Service (OBS)
○ Browse Web
○ Meetings / Video calls / Online conferences
○ Chat, work and personal
○ Occasionally play games
○ Occasional video-editing
○ Maybe scan / print some document

● Can all of the above be done with MicroOS already ?



What is MicroOS

● Immutable single purpose OS, based on Tumbleweed, born as container host but not 
limited to that use case
○ https://microos.opensuse.org/
○ https://en.opensuse.org/Portal:MicroOS
○ Richard’s and Ish’s talks!

https://youtu.be/8gGjcKdOWIc

https://youtu.be/nIwqzGbX-oc

https://microos.opensuse.org/
https://en.opensuse.org/Portal:MicroOS
https://youtu.be/8gGjcKdOWIc
https://youtu.be/nIwqzGbX-oc


What is MicroOS as a Desktop

● MicroOS ⇒ Single purpose immutable OS
● Each install does only one thing:

○ One thing == Hosting containers
○ One thing == Hosting VMs
○ One thing == Set Top Box
○ One thing == Your Desktop

■ More talks from Richard
■ The latest one, yesterday!

XXX oSLO CONF 2020 TALK XXX

https://youtu.be/ASSkQH9kNa0

https://youtu.be/7p4y9Meyy0M https://youtu.be/cZLckDUDYjw

https://youtu.be/ASSkQH9kNa0
https://youtu.be/7p4y9Meyy0M
https://youtu.be/cZLckDUDYjw


How I Got Involved

● SUSE Hack Week 19 (which happened in 2020)
○ Chance for SUSE employees to work on do whatever they find cool

● MicroOS as a Desktop
○ Immutable, taking

advantage of BTRFS
○ Base OS from distro,

apps from other
(proper?) sources

○ Rolling base, as based
on Tumbleweed

○ Rolling but reliable…
as based on
Tumbleweed

● I found it cool!  :-)
○ Tried and tested it
○ Started hacking on

toolbox  (see later)
  (https://hackweek.suse.com/projects/microos-desktop)

https://hackweek.suse.com/projects/microos-desktop


Why I Tried and Why I’m Liking it

● A relatively small and immutable base OS
○ Stable and reliable
○ Immutable ⇒ much more difficult to mess-up

● Issues with package dependencies:
<<Oh, no!! X can’t be installed/upgraded because libY needed by Z is too old>>
○ Fewer packages ⇒ a lot less likely to happen (in fact, never happened in months…)

● BTRFS at its finest:
○ Updates in non-running snapshots. Automatic rollback with health-check

● Apps from Flatpak/Flathub
○ Contributed to Flathub directly from upstream app developers

■ ⇒ Effort done once, multiple (all?) distro can profit from that
■ ⇒ Distro/OS developers can focus on OS, app developers can focus on apps

● Tumbleweed is rock solid, thanks to OpenQA, etc
○ As soon as you add an additional repository, this may change ...

■ Technically you’re not using the distro that has been developed & tested any longer
■ (In practice, fine, especially for Packman, etc. But, still.)

○ Here you don’t need any additional repository !

https://github.com/kubic-project/health-checker


Installing

● Just grab it: https://microos.opensuse.org/ , and install it!
● Choose “MicroOS Desktop [GNOME] [ALPHA]”
● Choose “KDE Plasma” if you want, but I’ve never tested it. No idea if/how it works!

https://microos.opensuse.org/


Immediately After Installing

● Add FlatHub as flatpak remote
○ $  flatpak remote-add --user flathub https://flathub.org/repo/flathub.flatpakrepo

● Some GNOME Software (black) magic:
○ $ gsettings set org.gnome.software install-bundles-system-wide false

$ gsettings set org.gnome.software allow-updates false
$ gsettings set org.gnome.software download-updates false
$ gsettings set org.gnome.software enable-repos-dialog false
$ gsettings set org.gnome.software first-run true

● Some zypper (black) magic:
○ $ sudo rm -Rf /var/cache/app-info

$ sudo transactional-update shell
  # rpm -e --nodeps libzypp-plugin-appdata
  # zypper al libzypp-plugin-appdata
  # exit
$ sudo reboot

● Shouldn’t this should all be done automatically?
○ Indeed ! Patches / SRs welcome :-P

https://flathub.org/repo/flathub.flatpakrepo


Some More Customization

● For toolbox (see later)
○ # echo "<yourusername>:100000:65536" > /etc/subuid

# echo "<yourusername>:100000:65536" > /etc/subgid

● I want passwordless sudo
○ # usermod -a -G wheel <yourusername>

# echo "%wheel  ALL = (root) NOPASSWD:ALL" > /etc/sudoers.d/wheel

● I want to disable automatic updating and rebooting
○ I will deal with updating (and rebooting) manually

■ $ sudo systemctl disable --now transactional-update.timer
$ sudo systemctl disable --now rebootmgr.service

○ Let’s check:
■ $ sudo rebootmgrctl is-active

RebootMgr is dead
$ sudo rebootmgrctl status
Error: The name org.opensuse.RebootMgr was not provided by any .service 
files

Should be done automatically too, IMO. 
Again, contributions welcome!



Additional Repositories & Packages

● Add repositories, e.g. Packman:
○ openSUSE Wiki: Additional package repositories
○ All of Packman:

■ zypper ar -cfp 90 
http://ftp.gwdg.de/pub/linux/misc/packman/suse/openSUSE_Tumbleweed/ packman

○ Install codecs
● Add <more repositories>
● Install <a lot of packages for whatever I need>

Right?

https://en.opensuse.org/Additional_package_repositories
http://ftp.gwdg.de/pub/linux/misc/packman/suse/openSUSE_Tumbleweed/


Additional Repositories & Packages

● Add repositories, e.g. Packman:
○ https://en.opensuse.org/Additional_package_repositories
○ All of Packman:

■ zypper ar -cfp 90 
http://ftp.gwdg.de/pub/linux/misc/packman/suse/openSUSE_Tumbleweed/ 
packman

○ Install codecs
● Add <more repositories>
● Install <a lot of packages for whatever I need>

Right?

https://en.opensuse.org/Additional_package_repositories


Installing Packages

● No zypper (well, it’s there but it’s locked ⇒ try it, it won’t work!)
● Transactional-update , directly:

○ $ sudo transactional update pkg install wget unzip
$ sudo reboot

● transactional-update  , via shell:
○ $ sudo transactional-update shell

  # zypper ref
  # zypper in wget unzip
  # exit
$ sudo reboot

● Multiple sessions:
○ $ sudo transactional -update pkg install wget

[...]
$ sudo transactional-update shell --continue
  # zypper in unzip
  # exit
$ sudo reboot

● Reboot always necessary, for seeing and using new packages: The Transactional Update Guide

https://youtu.be/e3_X7v7aoHk

https://kubic.opensuse.org/documentation/transactional-update-guide/transactional-update.html
https://youtu.be/e3_X7v7aoHk


Are We Constantly Rebooting ?

● Nah!
○ For instance, I haven’t rebooted this workstation since 3 days and 16 hours (and 

counting!)

● How so?
○ For apps:

■ Flatpak (from Flathub, https://flathub.org/)
○ For troubleshooting / debugging:

■ toolbox
○ For development

■ toolbox
○ For “development & apps”:

■ toolbox

● Installing/removing activities RPMs on the base OS tends to zero

https://flathub.org/


Flatpak

● It will be our main install source,
for all applications

● Via GNOME Software
○ Once configured as shown

● Via cli
○ flatpak install org.gnome.gedit

alias gedit=’flatpak run org.gnome.gedit’



Toolbox

● A shell script that launches a privileged container
○ Check: https://kubic.opensuse.org/blog/2019-10-22-toolbox/
○ Most other immutable OSes has something similar (e.g., Silverblue)
○ The host file system will be visible/accessible while inside the container (bind mounts, etc)

● The container can run:
○ As root

■ You may or may not have your regular user in the toolbox container
■ When you are root in the toolbox container run as root, you’re kind of root on the host

○ As your regular user
■ Thanks to “rootless podman”
■ You have your regular user in the toolbox container
■ Even when you are root in the toolbox container, you are not root on the host

● BEWARE: “privileged container” & ”can run as root”
○ It’s not a security enhancing tool
○ I.e.: <<I can do whatever I want, I’m in a container, I won’t affect or disrupt the base OS, right?>>

■ No, this is not the right mindset
○ You’re not less secure or safe than when you’re working directly on the base OS
○ You’re not more secure or safe either!

https://kubic.opensuse.org/blog/2019-10-22-toolbox/
https://docs.fedoraproject.org/en-US/fedora-silverblue/toolbox/
https://developers.redhat.com/blog/2020/09/25/rootless-containers-with-podman-the-basics/


Different Kind of Toolbox-es

● Creating and entering a toolbox that runs as your user, and be your own user while inside it:
○ Useful for using toolbox as your user / developer environment
○ $ toolbox -u        # -u ⇒ you will have your user, your /home, etc

 >                  # you’re inside the toolbox already!
○ $ toolbox -u -t foo # -t ⇒ to give this toolbox a name (‘t’ for ‘tag’)

 >                  # you’re now inside the toolbox tagged ‘foo’
 > sudo su          # you’re becoming root in container. But, e.g., you still
 #>                 # won’t be able to touch files owned by root on the host!

● Creating and entering a toolbox that runs as your user, but has only root user inside it:
○ Useful for using toolbox as a debugging and troubleshooting environment
○ $ toolbox  # no -u ⇒ no user except root, nothing in /home

 #>        # your are root already. But root in toolbox
 #>        # does not map on root on the host



Different Kind of Toolbox-es

● Creating and entering a toolbox that run as root, and be your own user while inside it:
○ Useful for using toolbox as your user / developer environment (that needs “special powers”)
○ $ toolbox -r -u        # -u ⇒ you will have your user, your /home, etc

 >                     # -r ⇒ the toolbox run as root on the host
○ $ toolbox -r -u -t foo # -t ⇒ to give this toolbox a name (‘t’ for ‘tag’)

 >                     # you’re now inside the toolbox tagged ‘foo’
 > sudo su             # you’re becoming root in container and that maps with
 #>                    # root on the hosr (you’ll be able to touch files owned
 #>                    # by root on the host, etc)

● Creating and entering a toolbox that runs as root, and has only root user root inside it:
○ Useful for using toolbox as a debugging/troubleshooting environment (with “special powers”)
○ $ toolbox -r  # -r ⇒ the toolbox run as root on the host

 #>          # no -u ⇒ no user except root, nothing in /home. Also,
 #>          # your are root already, and that does map with root on the host



Managing Your Toolbox-es

● Toolbox is stateful:
○ Yesterday you created a toolbox, and you install stuff, change configs, etc
○ Today you stop the toolbox, you turn off the PC and take the day off
○ Tomorrow toolbox will still have all the software and all the config changes you made

● Listing toolbox-es running as user:
○ $ podman ps

CONTAINER ID  IMAGE               COMMAND    CREATED     STATUS         NAMES
5cb19ade1fb1  [...]toolbox:latest sleep +Inf 3 weeks ago Up 3 hours ago toolbox-dario-user

● Listing all toolbox-es created as user (running ot not):
○ $ posman ps --all

CONTAINER ID  IMAGE               COMMAND    CREATED     STATUS     NAMES
5cb19ade1fb1  [...]toolbox:latest sleep +Inf 3 weeks ago Up 3 hours toolbox-dario-user
502722d98390  [...]toolbox:latest sleep +Inf 3 weeks ago Exited     toolbox-dario-user-dev

● For toolbox-es created as root:
○ $ sudo podman ps      # list the running ones
○ Sudo podman ps --all  # list all of them

● Removing toolbox-es:
○ $ podman rm <toolbox_name/ID>  # for a toolbox running as user
○ $ sudo podman rm <toolbox_name/ID>  # for a toolbox running as root



Toolbox For TroubleShooting

Toolbox is super handy for debugging and troubleshooting
● Example: you need to do a strace ls

■ You can try… but strace is not installed!
■ Install it with transactional-update pkg in and then reboot ?!?
■ No!

● $ toolbox             # runs as your user on the host (no -r )
 #> zypper in strace  # you’re root in toolbox, but that
                      # does not map to root on the host
 #> strace ls         # here you go your strace!

● Example, you need to nmap some host
■ Again, nmap is not there, and you don’t want to reboot!
■ Nmap needs “real root”, to scan low ports

● $ toolbox -r             # runs as root on the host ( -r )
 #> zypper install nmap  # we can add packages, no problem
 #> nmap -sS 192.168.0.2 # you’re root in toolbox and that
    <...>                # does map to root on the host



Toolbox Config File

● Some tweaking possible (and more possibilities of tweaking being worked on ;-P)
● Config file:

○ $ cat ~/.toolboxrc
REGISTRY=registry.opensuse.org
IMAGE=opensuse/toolbox:latest
TOOLBOX_NAME=special-debug-container
TOOLBOX_SHELL="/bin/bash"

●
● TOOLBOX_NAME: allows to tweak the basename of the toolbox-es
● REGISTRY + IMAGE: allows to use a different image for your toolbox-es

○ toolbox/latest is based on Tumbleweed
○ You can have Leap toolbox-es
○ You can make toolbox-es from your (Kiwi / OBS built) images
○ You can have toolbox-es based on different distros!

■ (possible already, but needs a little more work for dealing well with -u )

https://osinside.github.io/kiwi/
https://build.opensuse.org/


Toolbox for Graphical Apps

● They work too! ⇒ No need installing them in base OS
● $ toolbot -u

 > sudo zypper in gedit virt-manager
 > gedit
 > virt-manager

Errr… What?



Toolbox for Graphical Apps

● They work too! ⇒ No need installing them in base OS
● $ toolbot -u

 > sudo zypper in gedit virt-manager
 > sudo zypper in xorg-x11-fonts-core
 > sudo zypper in adwaita-icon-theme
 > gedit
 > virt-manager

Ok, now we’re
    Talking

(are we missing some deps
somewhere, maybe?)



Toolbox for “GL” Graphical Apps

● Kernelshark as an example:
○ $ toolbox -u

 > kernelshark
 libGL error: No matching fbConfigs or visuals found
 libGL error: failed to load driver: swrast
 QOpenGLWidget: Failed to create context
 QOpenGLWidget: Failed to create context
 qt.qpa.backingstore: composeAndFlush: QOpenGLContext creation failed
 qt.qpa.backingstore: composeAndFlush: makeCurrent() failed
 ...

● I have NVIDIA with proprietary drivers here. What if…
○ $ toolbox

 > sudo zypper addrepo https://download.nvidia.com/opensuse/tumbleweed NVIDIA
 > sudo zypper ref
 > sudo zypper in x11-video-nvidiaG05

● It installs stuff like:
○ kernel-default-devel , nvidia-gfxG05-kmp-default , nvidia-glG05  …
○ … Inside the container  ?

https://download.nvidia.com/opensuse/tumbleweed


Toolbox for “GL” Graphical Apps

● Kernelshark as an example:
○ $ toolbox -u

  > kernelshark
  libGL error: No matching fbConfigs or visuals found
  libGL error: failed to load driver: swrast
  QOpenGLWidget: Failed to create context
  QOpenGLWidget: Failed to create context
  qt.qpa.backingstore: composeAndFlush: QOpenGLContext creation failed
  qt.qpa.backingstore: composeAndFlush: makeCurrent() failed
  ...

● What if…
○ $ toolbox

  > sudo zypper addrepo https://download.nvidia.com/opensuse/tumbleweed NVIDIA
  > sudo zypper ref
  > sudo zypper in x11-video-nvidiaG05

● Install stuff like:
○ kernel-default-devel, nvidia-gfxG05-kmp-default, nvidia-glG05 …
○ … Inside the container  ?

Well, it works!

https://download.nvidia.com/opensuse/tumbleweed


Remember this?

● Virtualization Specialist Sw. Eng. @ SUSE since 2018, working on Xen, KVM, QEMU, 
mostly about performance related stuff

● Daily activities ⇒ how and what for I use my workstation
○ Read and send emails (Evolution, git-send-email, stg mail, ...)
○ Write, build & test code (Xen, KVM, Libvirt, QEMU)
○ Work with the Open Build Service (OBS)
○ Browse Web
○ Meetings / Video calls / Online conferences
○ Chat, work and personal
○ Occasionally play games
○ Occasional video-editing
○ Maybe scan / print some document

● Can all of the above be done with MicroOS already ?



Email, Calendaring, IM & Office Apps

● Mail, calendaring, contacts, ...
○ Evolution, org.gnome.Evolution
○ Calendar, org.gnome.Calendar
○ Contacts, org.gnome.Contacts
○ GNOME Clocks, org.gnome.clocks
○ Weather, org.gnome.Weather

● Documents
○ Evince, org.gnome.Evince
○ GNOME Documents, org.gnome.Documents
○ LibreOffice, org.libreoffice.LibreOffice

● Messaging
○ RocketChat, chat.rocket.RocketChat
○ Pidgin, im.pidgin.Pidgin
○ Telegram, org.telegram.desktop
○ Signal, org.signal.Signal

https://flathub.org/apps/details/org.gnome.Evolution
https://flathub.org/apps/details/org.gnome.Calendar
https://flathub.org/apps/details/org.gnome.Contacts
https://flathub.org/apps/details/org.gnome.clocks
https://flathub.org/apps/details/org.gnome.Weather
https://flathub.org/apps/details/org.gnome.Evince
https://flathub.org/apps/details/org.gnome.Documents
https://flathub.org/apps/details/org.libreoffice.LibreOffice
https://flathub.org/apps/details/chat.rocket.RocketChat
https://flathub.org/apps/details/im.pidgin.Pidgin
https://flathub.org/apps/details/org.telegram.desktop
https://flathub.org/apps/details/org.signal.Signal


Editors, Tools, Graphics

● Editors:
○ Vim, org.vim.Vim
○ Gedit, org.gnome.gedit
○ Setzer, org.cvfosammmm.Setzer
○ Eclipse, org.eclipse.Java

● Graphics
○ GIMP, org.gimp.GIMP
○ Krita, org.kde.krita
○ Blender, org.blender.Blender

● VMs:
○ GNOME Boxes, org.gnome.Boxes

● Tools:
○ Regex Tester,com.github.artemanufrij.regextester
○ Meld, org.gnome.meld
○ Boop-GTK,uk.co.mrbenshef.Boop-GTK

https://flathub.org/apps/details/org.vim.Vim
https://flathub.org/apps/details/org.gnome.gedit
https://flathub.org/apps/details/org.cvfosammmm.Setzer
https://flathub.org/apps/details/org.eclipse.Java
https://flathub.org/apps/details/org.gimp.GIMP
https://flathub.org/apps/details/org.kde.krita
https://flathub.org/apps/details/org.blender.Blender
https://flathub.org/apps/details/org.gnome.Boxes
https://flathub.org/apps/details/com.github.artemanufrij.regextester
https://flathub.org/apps/details/org.gnome.meld
https://flathub.org/apps/details/uk.co.mrbenshef.Boop-GTK


Utilities, Configuration

● Misc utilities:
○ SyncThing, me.kozec.syncthingtk
○ Barrier, com.github.debauchee.barrier
○ Seahorse, org.gnome.seahorse.Application

● Config:
○ Dconf Editor, ca.desrt.dconf-editor
○ Flatseal, com.github.tchx84.Flatseal
○ GPU-Viewer, io.github.arunsivaramanneo.GPUViewer

https://flathub.org/apps/details/me.kozec.syncthingtk
https://flathub.org/apps/details/com.github.debauchee.barrier
https://flathub.org/apps/details/org.gnome.seahorse.Application
https://flathub.org/apps/details/ca.desrt.dconf-editor
https://flathub.org/apps/details/com.github.tchx84.Flatseal
https://flathub.org/apps/details/io.github.arunsivaramanneo.GPUViewer


Browsing

● Firefox, from the Flatpak (org.mozilla.firefox)
○ Works great, including video codecs

(and without having to add Packman repos)
● Epiphany (GNOME Web, org.gnome.Epiphany)
● Chrome[ium]

○ There is no Flatpak for that yes
(but no, but it’s being worked on)

○ Installed in the base OS, with
Transactional-update (and reboot)

● NB: GNOME Shell Extension can’t be installed
from a “Flatpak-ed” browser yet
○ You probably need at least one browser

in the base OS (I have Chrome)

https://flathub.org/apps/details/org.mozilla.firefox
https://flathub.org/apps/details/org.gnome.Epiphany
https://github.com/flathub/com.google.Chrome


Gaming

● Steam, com.valvesoftware.Steam
○ Works great, even

SteamPlay/Proton

● NVIDIA Drivers
○ $ sudo transactional-update shell

 # zypper ar --refresh https://download.nvidia.com/opensuse/tumbleweed NVIDIA
 # zypper in nvidia-glG05 x11-video-nvidiaG05
 # exit
$ sudo reboot

○ Brings in gcc and some development
packages (not ideal... Thanks NVIDIA, I guess :-/ )

● NB flatpak picked up automatically:
org.freedesktop.Platform.GL.nvidia-450-66
org.freedesktop.Platform.GL32.nvidia-450-66

https://flathub.org/apps/details/com.valvesoftware.Steam
https://download.nvidia.com/opensuse/tumbleweed


Video: Viewing, Editing & Codecs

● Remember: we did not add Packman

● VLC, org.videolan.VLC
○ Has the proper codecs

● Pitivi, org.pitivi.Pitivi
○ Has the proper codecs

● Openshot, org.openshot.OpenShot
○ Has the proper codecs

● Cheese, org.gnome.Cheese
○ Works well with my webcam

https://flathub.org/apps/details/org.videolan.VLC
https://flathub.org/apps/details/org.pitivi.Pitivi
https://flathub.org/apps/details/org.openshot.OpenShot
https://flathub.org/apps/details/org.gnome.Cheese


Printing & Scanning

● Printing
○ By default: no cups, no PPDs, …
○ Tried installing (transactional-update)
○ It works!
○ OBS request 840921
○ Should just work for everyone now

● Scanning
○ By default: no sane packages
○ Tried installing

(transactional-update)
○ Flatpak apps (e.g., Paper) don’t work yet
○ Still working on it
○ (yeah, most scanners, e.g., from all-in-one

printers, have Web-ish interface. But still)

https://build.opensuse.org/request/show/840921


● Virtualization Specialist Sw. Eng. @ SUSE since 2018, working on Xen, KVM, QEMU, 
mostly about performance related stuff

● Daily activities ⇒ how and what for I use my workstation
○ Read and send emails (Evolution, git-send-email, stg mail, ...) Check
○ Write, build & test code (Xen, KVM, Libvirt, QEMU)
○ Work with the Open Build Service (OBS)
○ Browse Web Check
○ Meetings / Video calls / Online conferences Check
○ Chat, work and personal Check
○ Occasionally play games Check
○ Occasional video-editing Check
○ Maybe scan / print some document Check

● Can all of the above be done with MicroOS already ?

Remember this?^2



Hacking On, E.g., QEMU

● Dependencies for building QEMU from sources:
○ bc bison bluez-devel brlapi-devel bzip2 ccache clang cyrus-sasl-devel flex gcc gcc-c++ 

gettext-tools git glib2-devel glusterfs-devel gtk3-devel gtkglext-devel gzip hostname libSDL2-devel 
libaio-devel libasan4 libcap-devel libcap-ng-devel libcurl-devel libfdt-devel libgcrypt-devel 
libgnutls-devel libjpeg62-devel libnettle-devel libnuma-devel libpixman-1-0-devel libpng16-devel 
librbd-devel libseccomp-devel libspice-server-devel libssh-devel libssh2-devel libtasn1-devel 
libudev-devel libxml2-devel lzo-devel make makeinfo multipath-tools-devel ncurses-devel perl 
pkg-config python3 python3-PyYAML python3-Sphinx rdma-core-devel snappy-devel sparse tar 
usbredir-devel virglrenderer-devel vte-devel which xen-devel zlib-devel

○ You don’t want to install them with transactional-update and reboot
○ Oh, you forgot one / there is a new one needed:

■ Install with transactional-update and reboot again?
○ Do try! I promise that it won’t be funny :-/

● Toolbox to the rescue:
○ $ toolbox -u -t dev   # -r may or may not be needed. Generally not for building

 > sudo zypper in <all_the_dependencies_above>
 > cd <your QEMU sources directory in your home (it’s there in the toolbox!)>
 > <do your changes>
 > <build it>

https://www.qemu.org/


Working With OBS

Requires installing packages, using VMs for building, etc.
● toolbox , what else ?!
● I need a -r one, for mounting filesystems in the build VM (I think)

$ toolbox -u -r -t dev
 > zypper ar https://download.opensuse.org/[...]/openSUSE_Tumbleweed/openSUSE:Tools.repo
 > zypper in cpio osc build [...]
 > osc mkpac / co / vc
 > [...]
 > osc vc
 > osc build --vm-type=kvm
 > osc commit

Building outside of VMs
currently not working
● (but it’s better to

build In VMs anyway…)

https://download.opensuse.org/repositories/openSUSE:/Tools/openSUSE_Tumbleweed/openSUSE:Tools.repo


Working on Libvirt and QEMU

Real scenario:
● I make a change in QEMU
● I make a change in Libvirt
● I want to build and also test my changes

How it works for me:
1. I work on the changes themselves inside my development toolbox
2. Still in there, I start my modified libvirtd , make it listed on TCP (no socket activation)

○ $ toolbox -r -u -t dev
 $> <work on QEMU> && <build QEMU> && <install my QEMU>
 $> <work on libvirt> && <build libvirt> && <install my libvirt>
 $> sudo ./build/src/virtlogd &
 $> sudo ./build/src/libvirtd -v -l

3. From (either the same or a different) toolbox I start virsh and/or virt-manager  and
connect to my modified libvirtd

○ $ toolbox -u        # this is my user/dev apps toolbox
 $> virsh --connect=qemu+tcp://localhost/system
 $> virsh # list --all
 Id   Name         State
 -----------------------------
  -    Tumbleweed   shut off



Working on Libvirt and QEMU

libvirtd  running in a tmux session 
running inside my `toolbox -r -u -t dev`

Virt-manager running in my 
`toolbox -u` and connecting 
to libvirtd  in the other 
toolbox

VM started by virt-manager  
in the `toolbox -u`. It’s actually 
running inside `toolbox -r -u -t 
dev, using my modified Libvirt 
and QEMU



A Day in the Life of a Developer who 
Uses MicroOS as Workstation...

● I hacked on toolbox in such a way that:
○ With toolbox -u and/or toolbox -r -u:

■ You have your user inside the toolbox
■ You have your home, in its usual place
■ Your files have the proper owner, group, permissions
■ You reach your SSH agent (running on the host)
■ You can launch graphical apps
■ You have sudo

● Also:
○ With -t, you can have multiple toolbox-es, e.g.:

■ One per each project you’re working on?
■ One for work projects and one for home projects?
■ One for … … ...

● IOW: It’s a quite cool development environment
○ I adopted it even on Tumbleweed, before moving to MicroOS!



A Day in the Life of a Developer who 
Uses MicroOS as Workstation...

My morning routine:
1. Wake-up / wake-up the kids / have breakfast with them / bring them to school   ;-P
2. Brew some more coffee
3. Open gnome-terminal
4. Enter a toolbox -r -u -t dev  (brings me inside toolbox-dario-user-dev )
5. Start tmux inside that toolbox

a. all panes will be inside the toolbox already!
b. Stay in there until end of day

6. Maybe, enter my toolbox -u  (brings me inside toolbox-dario-user )
a. Use some apps from there that I need but don’t want to install in the base OS

7. <<Hey network to the office seems slow!>>
a. $ toolbox -r

 #> zypper in traceroute
 #> traceroute www.suse.com

8. … … ...

http://www.suse.com


Some Stats

● RPM Packages
○ On my MicroOS Desktop: ~1000

■ But I’ve done a few experiments, added stuff, …
○ In a development toolbox on my MicroOS Desktop: ~1300

● No Desktop Environment packages
● But with some GUI apps & libs

○ On a stock Fedora Silverblue: ~1200
○ On a Tumbleweed box I also have: ~3500

■ Not used for development (so no -devel pkgs)
■ A few apps as flatpak there as well

● Flatpaks
○ Apps installed: 68
○ All flatpaks (including runtimes): 110
○ Disk space: 12 GB



Example: Nautilus, Trash, USB Keys,
From “not working” to “it works!”

Problem:
● Nautilus was looking weird (showing all BTRFS subvolumes, etc)
● Trash was not working

○ Files going in .local/share/Trash
○ Not being shown when clicking on “Trash” icon

● USB keys not being (auto)mounted, /run/media/<user> not appearing
Let’s try something...
● Mounting USB keys in /run/<user>/<volume> ⇒ it’s udisks2
● On a Tumbleweed:

○ ps aux | grep udisk ⇒ 
/usr/libexec/gvfs/gvfs-udisks2-volume-monitor
/usr/libexec/udisks2/udisksd

○ rpm -qf ⇒
gvfs-backends-1.44.1-2.4.x86_64
udisks2-2.8.4-1.3.x86_64



Example: Nautilus, Trash, USB Keys

● Let’s fix it!
○ $ sudo transactional-update pkg in gvfs-backends udisks2

$ sudo reboot
● It works!
● OBS request 840921
● Should just work for everyone

now

https://build.opensuse.org/request/show/840921


Conclusions

● Using MicroOS as a Desktop / Workstation is already possible, IME
○ Requires some manual fiddling with configurations, but it’s mostly something done 

right after install and then forgotten
● It’s pretty comfortable to use

○ In fact, I started using it just as an experiment. But I’m definitely staying!
● It pushes you to do things properly

○ No quick-&-dirty hacks, like symlinking that library to make that other app work
○ Results is a much cleaner and stable system

● It’s not perfect yet:
● It asks for a password too many times, post install manual config steps should be done 

automatically, we may want to have a GUI way for updating the base OS (like Silverblue 
does), etc.

● It needs you! As a user, as a tester, as a contributor, as an “evangelist”, as... 
Well,  whatever you want to do, you’re welcome!



About Myself

● Ph.D on Real-Time Scheduling, SCHED_DEADLINE

● 2011, Sr. Software Engineer @ Citrix
The Xen-Project, hypervisor internals,
NUMA-aware scheduler, Credit2 scheduler,
Xen scheduler maintainer

● 2018, Virtualization Software Engineer @ SUSE
Still Xen, but also KVM, QEMU, Libvirt;
Scheduling, VM’s virtual topology,
performance evaluation & tuning

https://www.kernel.org/doc/html/latest/scheduler/sched-deadline.html?highlight=sched_deadline
https://xenproject.org/
https://www.suse.com/
https://www.linux-kvm.org/page/Main_Page
https://www.qemu.org/
https://libvirt.org/index.html
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