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Introduction



Typical spreadsheet

ltem?2 =Value*2 =Valuel+Value2
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Typical spreadsheet (#2)

Formula group 1 Formula group 2
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Typical spreadsheet (#3)

=Value*2 =Valuel+Value2 —

Independent rows
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Parallel calculation

Rows are often “the same” but independent
Modern CPUs do not improve single core performance that much
But they have more cores

-> It makes sense to compute in parallel

e Reasonably simple

e Should scale well
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Implementation

ScFormulacCell

e Each spreadsheet cell

ScFormulaCellGroup

e Grouped cells sharing the same code

Make each thread calculate different cells in the same group
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Lockless (mostly)
Threads operate on separate data = no need to lock
Shared instances — per-thread instances

Lock only if needed or if not performance critical
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For more details,
talk by Tor from 2017


https://www.collaboraoffice.com/

Problems



Static data

static OUString myCachedValue;

e Use thread local

Simply remove the optimization

Add locking, if worth it (local mutex)

ScinterpreterContext
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Storing state in classes

class ... { ... int currentindex; ... };

e Protect class use with a mutex
e Move state to its own class (e.g. iterators)

e Move state to a function parameter

This includes also various caching.
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On-demand initialization

If( singleton == nullptr ) singleton = new Singleton;
o use C++11 thread-safe statics (required now by LO build)

 static Singleton™ singleton = new Singleton;

e Leaks memory
e Singleton* getSingleton() { static Singleton s; return &s; }

e Either case cannot be cleaned up

« comphelper::doubleCheckedInit( singleton, []() { return new
Singleton; })
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Unsafe code

A lot of library code is not thread-safe (even our code)

e Fix the code (if possible)
o Add locking to the code (if worth it)

e Protect code use from Calc with a mutex
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SolarMutex

SolarMutex is still held by main thread while threaded calculation
is in progress

« |f not done, other threads might interfere (UNO calls, clipboard
thread)

— Calculation threads may not access code requiring SolarMutex

Maybe needs a solution for some cases ???

e Transfer SolarMutex ownership?

e Ask main thread to perform an operation?
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Threaded calc assert

assert(!IsThreadedGroupCalcInProgress());

e Code is not meant to be run in threads
o Use the proper function (if exists)

e Make sure code in threads does not modify spreadsheet
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ScMutationGuard assert

Code in calculation threads should not modify the document

o (Except for calculating cell results)
e Check your code

e Move code outside of calculation threads
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(More) Solutions



Unsupported opcode/type

INDIRECT() (ocIndirect) - may possibly make cells dependent

ocExternal - external functionality (UNO calls)

e Hard to check all code

e May easily deadlock (SolarMutex)

DDE() (ocDDE) - LinkManager class uses extensive caching without
locking

External references - ScExternalRefManager uses extensive caching
without locking
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Unsupported opcode/type (#2)

Simply blacklist all formulas containing problematic
opcodes/types

ScTokenArray::CheckForThreading()
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ScinterpreterContext

Per-thread data structure, pointer to it passed around

Per-thread class instances

o ScDocument::GetFormatTable() = context—>mpFormatter
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ScinterpreterContext (#2)

Caches (VLOOKUP)
e Finding result of VLOOKUP may be expensive
o Same lookup used several columns in the same row
« Values must survive between thread invocations

o SetupFrom/MergeBackintoNonThreadedContext()
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ScinterpreterContext (#3)

Moving operation to the main thread

o ScDocument::setNumberFormat() is not thread-safe
e Calls to it can be postponed
e Save relevant data in ScinterpreterContext

o Actual call(s) performed by main thread after calculation
threads finish

4 Collabora Productivity


https://www.collaboraoffice.com/

Add asserts

assert(!IsThreadedGroupCalcInProgress());

o Add wherever need (especially if unsure)
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Helgrind (Valgrind)

Detecting thread problems from the Valgrind tools suite

e VALGRIND=helgrind start_lo.sh
e Slow

e Can still save time when finding difficult problems
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Testing



Ensure threaded calculation is used

Threads vs OpenCL vs normal (non-threaded)
e Modify settings in Ul

e Temporarily hardcode in CalcConfig class functions

Test even with small formula groups

e Group calculation is normally used only for larger groups
e mnOpenCLMinimumFormulaGroupSize

e Should be improved to make possible running tests for
everything with the wanted calculation method
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Thank you.

By Lubos Lunak

|.lunak@collabora.com
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