Improving Calc
parallel calculations

By Lubos Lunak

Software Developer at Collabora Productivity

https://www.collaboraoffice.com/

Introduction

Typical spreadsheet

ltem?2 =Value*2 =Valuel+Value2

}’ Collabora Productivity www.collaboraoffice.co
m

https://www.collaboraoffice.com/

Typical spreadsheet (#2)

Formula group 1 Formula group 2

}’ Collabora Productivity www.collaboraoffice.co
m

https://www.collaboraoffice.com/

Typical spreadsheet (#3)

=Value*2 =Valuel+Value2 —

Independent rows

}’ Collabora Productivity www.collaboraoffice.co
m

https://www.collaboraoffice.com/

Parallel calculation

Rows are often “the same” but independent
Modern CPUs do not improve single core performance that much
But they have more cores

-> It makes sense to compute in parallel

e Reasonably simple

e Should scale well

4 Collabora Productivity

https://www.collaboraoffice.com/

Implementation

ScFormulacCell

e Each spreadsheet cell

ScFormulaCellGroup

e Grouped cells sharing the same code

Make each thread calculate different cells in the same group

4 Collabora Productivity

https://www.collaboraoffice.com/

Lockless (mostly)
Threads operate on separate data = no need to lock
Shared instances — per-thread instances

Lock only if needed or if not performance critical

4 Collabora Productivity

https://www.collaboraoffice.com/

For more details,
talk by Tor from 2017

https://www.collaboraoffice.com/

Problems

Static data

static OUString myCachedValue;

e Use thread local

Simply remove the optimization

Add locking, if worth it (local mutex)

ScinterpreterContext

4 Collabora Productivity

https://www.collaboraoffice.com/

Storing state in classes

class ... { ... int currentindex; ... };

e Protect class use with a mutex
e Move state to its own class (e.g. iterators)

e Move state to a function parameter

This includes also various caching.

4 Collabora Productivity

https://www.collaboraoffice.com/

On-demand initialization

If(singleton == nullptr) singleton = new Singleton;
o use C++11 thread-safe statics (required now by LO build)

 static Singleton™ singleton = new Singleton;

e Leaks memory
e Singleton* getSingleton() { static Singleton s; return &s; }

e Either case cannot be cleaned up

« comphelper::doubleCheckedInit(singleton, []() { return new
Singleton; })

4 Collabora Productivity

https://www.collaboraoffice.com/

Unsafe code

A lot of library code is not thread-safe (even our code)

e Fix the code (if possible)
o Add locking to the code (if worth it)

e Protect code use from Calc with a mutex

4 Collabora Productivity

https://www.collaboraoffice.com/

SolarMutex

SolarMutex is still held by main thread while threaded calculation
is in progress

« |f not done, other threads might interfere (UNO calls, clipboard
thread)

— Calculation threads may not access code requiring SolarMutex

Maybe needs a solution for some cases ???

e Transfer SolarMutex ownership?

e Ask main thread to perform an operation?

4 Collabora Productivity

https://www.collaboraoffice.com/

Threaded calc assert

assert(!IsThreadedGroupCalcInProgress());

e Code is not meant to be run in threads
o Use the proper function (if exists)

e Make sure code in threads does not modify spreadsheet

4 Collabora Productivity

https://www.collaboraoffice.com/

ScMutationGuard assert

Code in calculation threads should not modify the document

o (Except for calculating cell results)
e Check your code

e Move code outside of calculation threads

4 Collabora Productivity

https://www.collaboraoffice.com/

(More) Solutions

Unsupported opcode/type

INDIRECT() (ocIndirect) - may possibly make cells dependent

ocExternal - external functionality (UNO calls)

e Hard to check all code

e May easily deadlock (SolarMutex)

DDE() (ocDDE) - LinkManager class uses extensive caching without
locking

External references - ScExternalRefManager uses extensive caching
without locking

4 Collabora Productivity

https://www.collaboraoffice.com/

Unsupported opcode/type (#2)

Simply blacklist all formulas containing problematic
opcodes/types

ScTokenArray::CheckForThreading()

4 Collabora Productivity

https://www.collaboraoffice.com/

ScinterpreterContext

Per-thread data structure, pointer to it passed around

Per-thread class instances

o ScDocument::GetFormatTable() = context—>mpFormatter

4 Collabora Productivity

https://www.collaboraoffice.com/

ScinterpreterContext (#2)

Caches (VLOOKUP)
e Finding result of VLOOKUP may be expensive
o Same lookup used several columns in the same row
« Values must survive between thread invocations

o SetupFrom/MergeBackintoNonThreadedContext()

/ R \
| \ \
| | | |
| | | |
e

4 Collabora Productivity

https://www.collaboraoffice.com/

ScinterpreterContext (#3)

Moving operation to the main thread

o ScDocument::setNumberFormat() is not thread-safe
e Calls to it can be postponed
e Save relevant data in ScinterpreterContext

o Actual call(s) performed by main thread after calculation
threads finish

4 Collabora Productivity

https://www.collaboraoffice.com/

Add asserts

assert(!IsThreadedGroupCalcInProgress());

o Add wherever need (especially if unsure)

4 Collabora Productivity

https://www.collaboraoffice.com/

Helgrind (Valgrind)

Detecting thread problems from the Valgrind tools suite

e VALGRIND=helgrind start_lo.sh
e Slow

e Can still save time when finding difficult problems

4 Collabora Productivity

https://www.collaboraoffice.com/

Testing

Ensure threaded calculation is used

Threads vs OpenCL vs normal (non-threaded)
e Modify settings in Ul

e Temporarily hardcode in CalcConfig class functions

Test even with small formula groups

e Group calculation is normally used only for larger groups
e mnOpenCLMinimumFormulaGroupSize

e Should be improved to make possible running tests for
everything with the wanted calculation method

4 Collabora Productivity

https://www.collaboraoffice.com/

. Collabora Productivity

Thank you.

By Lubos Lunak

|.lunak@collabora.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

