

collabora online . com

Collabora Productivity

About us

Collabora Ltd.

● Leading Open Source Consultancy

● 10+ years of experience. 100+ people

Collabora Productivity Ltd.

● Dedicated to Enterprise LibreOffice

● Developers with 10+ years of experience with the codebase

● Provides Level-3 support (code issues) to all SUSE LibreOffice clients

https://www.collaboraoffice.com/

collabora online . com

Collabora Productivity

Details of LibreOffice cross-compilation

● Configure script run twice, for “build” and “host” (run-time)

platforms

● For the build platform we build only build-time tools

● For iOS (and Android) the build produces only static

archives, no dynamic libraries

● No unit testing

● No app code in the core repo

https://www.collaboraoffice.com/

collabora online . com

Collabora Productivity

History, overview

● First LibreOffice cross-compilation efforts (to iOS, Android,

and Windows) in 2011

● Initially just a spare time effort with few concrete plans

● CloudOn sponsored the iOS effort around 2014 for some

time, but before that resulted in any real product the

company was acquired, their product plans changed, and
the work fizzled out

https://www.collaboraoffice.com/

collabora online . com

Collabora Productivity

History, overview, continued

● Not much happening for many years; a barebones test app

was kept more or less working, and a different approach

was started by Jan Iversen, but not finished

● In 2018 a fresh start based on the Collabora Online

codebase, both its C++ “server” code (as applicable) and

JavaScript user interface code. Partially funded by Adfinis
SyGroup from Switzerland

https://www.collaboraoffice.com/

collabora online . com

Collabora Productivity

LibreOfficeKit

● Originally intended to be a mostly C-like API for the basic

functionality of loading and saving documents

● For cases where the “normal” UNO API is seen as too complicated

● Later extended with the “tiled rendering” concept where

rectangular tiles of a view of the document are rendered by the

core code on request by client code, and other features

● The CloudOn app used LibreOfficeKit

● Used by Collabora Online

https://www.collaboraoffice.com/

collabora online . com

Collabora Productivity

Collabora Online

● Server-based solution with several processes: One master

“wsd” process, one “broker” process, and one “kit” process per

open document (with potentially multiple editing end user

clients), with strict isolation (chroot etc) for the “kit” processes

● Browser-based client, with lots of JavaScript

● Client-server communication uses WebSockets

● Also communication between processes uses WebSockets

https://www.collaboraoffice.com/

collabora online . com

Collabora Productivity

Combining all the above in an iOS app

● LibreOffice core C++ code and Online server-side C++ code run as the
app process

● Some additional platform-specific app code in Objective-C. Not Swift,
to make it easier to interface with the C++ bits of the Online server
code. (Also, I don’t know Swift yet.)

● The HTML and JavaScript client parts run in a WebKit WebView that
the platform-specific code manages. (On iOS each WKWebView is
actually for safety and performance reasons a separate process, but
that is mostly transparent.)

https://www.collaboraoffice.com/

collabora online . com

Collabora Productivity

Combining all the above in an iOS app, continued

● Communication between JavaScript and C++ using platform-

provided APIs. The native code requests the WebView

JavaScript engine to perform a snippet of JavaScript.

JavaScript code invokes a callback in the native code

● Communication between the parts of server code that in

normal Online are different processes uses in-process buffers

(no sockets or other system IPC mechanism)

https://www.collaboraoffice.com/

collabora online . com

Collabora Productivity

Other platforms

● Same basic setup. Just the platform-specific code (the

Objective-C++ code in the iOS case) needs to be written

separately

● As an example and experiment, a rudimentary gtk+ one

was written. Mainly in the (vain?) hope that people with

only Linux might be interested in working on the JavaScript
side of the code

https://www.collaboraoffice.com/

collabora online . com

Collabora Productivity

Details of building the app

● All static libraries built in LibreOffice core get listed in a file

● Name of that file is passed to linker when building the app

binary

● UNO component instantiation does not use dynamic

linking but a map from component (or constructor) name

to function pointer, thus all required UNO components get
statically linked in

https://www.collaboraoffice.com/

collabora online . com

Collabora Productivity

Details of building the app, library list
/Volumes/TML13/lo/ios-optimised-cp-6.0/instdir/program/libcomphelper.a
/Volumes/TML13/lo/ios-optimised-cp-6.0/instdir/program/libconfigmgrlo.a
/Volumes/TML13/lo/ios-optimised-cp-6.0/instdir/program/libcppcanvaslo.a
/Volumes/TML13/lo/ios-optimised-cp-6.0/instdir/program/libctllo.a
/Volumes/TML13/lo/ios-optimised-cp-6.0/instdir/program/libcuilo.a
/Volumes/TML13/lo/ios-optimised-cp-6.0/instdir/program/libdatelo.a
/Volumes/TML13/lo/ios-optimised-cp-6.0/instdir/program/libdbtoolslo.a
/Volumes/TML13/lo/ios-optimised-cp-6.0/instdir/program/libdeployment.a
/Volumes/TML13/lo/ios-optimised-cp-6.0/instdir/program/libdeploymentgui.a
/Volumes/TML13/lo/ios-optimised-cp-6.0/instdir/program/libdeploymentmisclo.a
/Volumes/TML13/lo/ios-optimised-cp-6.0/instdir/program/libdesktopbe1lo.a
/Volumes/TML13/lo/ios-optimised-cp-6.0/instdir/program/libdrawinglayerlo.a
/Volumes/TML13/lo/ios-optimised-cp-6.0/instdir/program/libeditenglo.a
/Volumes/TML13/lo/ios-optimised-cp-6.0/instdir/program/libembobj.a
/Volumes/TML13/lo/ios-optimised-cp-6.0/instdir/program/libemboleobj.a
/Volumes/TML13/lo/ios-optimised-cp-6.0/instdir/program/libemfiolo.a
/Volumes/TML13/lo/ios-optimised-cp-6.0/instdir/program/libepoxy.a
workdir/CustomTarget/ios/ios-all-static-libs.list

https://www.collaboraoffice.com/

collabora online . com

Collabora Productivity

Details of building the app, linker command in Xcode

/Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/bin/clang++ -arch arm64 -isysroot
/Applications/Xcode.app/Contents/Developer/Platforms/iPhoneOS.platform/Developer/SDKs/iPhoneOS12.4.sdk
-L/Users/tml/Library/Developer/Xcode/DerivedData/Mobile-gpxwjbpmxlnjkxafxmjgsdmsxwnz/Build/Products/Debug-iphoneos
-F/Users/tml/Library/Developer/Xcode/DerivedData/Mobile-gpxwjbpmxlnjkxafxmjgsdmsxwnz/Build/Products/Debug-iphoneos -filelist
/Users/tml/Library/Developer/Xcode/DerivedData/Mobile-gpxwjbpmxlnjkxafxmjgsdmsxwnz/Build/Intermediates.noindex/Mobile.build/
Debug-iphoneos/Mobile.build/Objects-normal/arm64/Mobile.LinkFileList -Xlinker -rpath -Xlinker @executable_path/Frameworks -Xlinker
-map -Xlinker /Users/tml/Library/Developer/Xcode/DerivedData/Mobile-gpxwjbpmxlnjkxafxmjgsdmsxwnz/Build/Intermediates.noindex/
Mobile.build/Debug-iphoneos/Mobile.build/Mobile-LinkMap-normal-arm64.txt -miphoneos-version-min=11.4 -dead_strip -Xlinker -
object_path_lto -Xlinker /Users/tml/Library/Developer/Xcode/DerivedData/Mobile-gpxwjbpmxlnjkxafxmjgsdmsxwnz/Build/
Intermediates.noindex/Mobile.build/Debug-iphoneos/Mobile.build/Objects-normal/arm64/Mobile_lto.o -Xlinker -export_dynamic -Xlinker
-no_deduplicate -stdlib=libc++ -fobjc-arc -fobjc-link-runtime -filelist
/Volumes/TML13/lo/online-ios-co-4/ios/../lobuilddir-symlink/workdir/CustomTarget/ios/ios-all-
static-libs.list -L /Volumes/TML13/lo/online-ios-co-4/ios/../pocolib-symlink -lPocoFoundationd -lPocoUtild -lPocoXMLd -
lPocoJSONd -lPocoNetd -framework MobileCoreServices -framework WebKit -lz -liconv -Xlinker -dependency_info -Xlinker
/Users/tml/Library/Developer/Xcode/DerivedData/Mobile-gpxwjbpmxlnjkxafxmjgsdmsxwnz/Build/Intermediates.noindex/Mobile.build/
Debug-iphoneos/Mobile.build/Objects-normal/arm64/Mobile_dependency_info.dat -o /Users/tml/Library/Developer/Xcode/DerivedData/
Mobile-gpxwjbpmxlnjkxafxmjgsdmsxwnz/Build/Products/Debug-iphoneos/Mobile.app/Mobile

https://www.collaboraoffice.com/

collabora online . com

Collabora ProductivityDetails of building the app, UNO component
instantiation

https://www.collaboraoffice.com/

collabora online . com

Collabora Productivity

Details of building the app, continued

● A Python script in core generates those maps, based on

what the app is observed to need, based on error

messages displayed when runing the app. This is

somewhat ad-hoc, sure

● Only functions actually needed get linked in

● Configuration files, rc files, etc are mostly as in a normal
LibreOffice

https://www.collaboraoffice.com/

collabora online . com

Collabora ProductivityDetails of building the app, Python script to generate
maps to UNO component constructor functions

https://www.collaboraoffice.com/

collabora online . com

Collabora Productivity

Details of building the app, Python script output

https://www.collaboraoffice.com/

collabora online . com

Collabora Productivity

Details of building the app, Python script output

https://www.collaboraoffice.com/

collabora online . com

Collabora Productivity

Details of building the app, Python script output

https://www.collaboraoffice.com/

collabora online . com

Collabora Productivity

Details of building the app, Python script output

https://www.collaboraoffice.com/

collabora online . com

Collabora Productivity

Code walk-through: Initialisation

● AppDelegate.mm,

application:didFinishLaunchingWithOptions method

● Initialise Poco logging

● Locale and UI language setup

● Template download for customer-specific cases

● Start a thread that creates a LOOLWSD object (corresponds

to the “wsd” process in real Online), runs it, repeat

https://www.collaboraoffice.com/

collabora online . com

Collabora Productivity

Code walk-through: Document browsing

● On iOS, comes “for free”:

UIDocumentBrowserViewController

● DocumentBrowserViewController.mm

● When the user selects a document to edit, a Document

object is created

https://www.collaboraoffice.com/

collabora online . com

Collabora Productivity

Code walk-through: Document loading

● Document.mm

● Creates a DocumentViewController and passes it the URL of the HTML

page, and the document URL, the UI language, and some other things

as query parameters

● Here is the send2JS() code that sends what corresponds to a WebSocket

“message” to the JavaScript bits

● Send2JS() executes one JavaScript expression in the WebView that

“receives” a base64-encoded message (as in the WebSocket protocol

used in normal Online)

https://www.collaboraoffice.com/

collabora online . com

Collabora Productivity

Code walk-through: Document view

● DocumentViewController.mm

● Creates the WebView (WKWebView)

● Here is the callback that corresponds to receiving

WebSocket messages in the server in real Online

https://www.collaboraoffice.com/

collabora online . com

Collabora Productivity

Code walk-through: HTML shown in the WebView

● Generated from loleaflet.html.m4 (yikes)

● Mostly the same as in normal Online

● M4 is used to do some conditional stuff that sets flags

used in the JavaScript to check whether it is running in the

iOS app

https://www.collaboraoffice.com/

collabora online . com

Collabora Productivity

Code walk-through: Localisation

● Very different from in normal Online

● Localisation for all bundled UI languages is massaged by a

Perl script (yay) into one JSON structure

● The _ function in the iOS app case looks up the translation

in that

https://www.collaboraoffice.com/

collabora online . com

Collabora Productivity

Code walk-through: JavaScript

● global.js: gets inserted into loleaflet.html. The _ function is

here

● Rest of JavaScript is all minimized and bundled into

bundle.js

● L.Map.loadDocument(): This starts the magic. No real

WebSockets are used, but a “FakeWebSocket” that uses
the WebView JS side API to talk to the embedding app

https://www.collaboraoffice.com/

collabora online . com

Collabora Productivity

Code walk-through: JavaScript, more

● Most of the JavaScript works exactly the same in normal

Online and in the app. The differences are described below

● As the app is developed for the iPad, there is less need to

desperately save screen space than on the iPhone. The

menubar is shown all the time for instance

https://www.collaboraoffice.com/

collabora online . com

Collabora Productivity

Code walk-through: more differences to Online

● As there is no HTTP involved in the app, functionality that

in normal Online uses separate HTTP requests must use

other mechanism to cause code in the embedding app to

be invoked. For instance printing and PDF export

https://www.collaboraoffice.com/

collabora online . com

Collabora Productivity

Building the app

● First you build the core part, separately, using a normal

“make”. This produces the static archives mentioned earlier

● The JavaScript bits are massaged into a bundle.js etc, so far

on a Linux machine because of npm etc that is easier to use

on Linux. Then copied over to the Mac

● Then you build the Online C++ and app-specific Objective-

C++ parts in Xcode

https://www.collaboraoffice.com/

collabora online . com

Collabora Productivity

Debugging?

● The C++ and Objective-C++ code can be debugged in

Xcode, the JavaScript code in Safari on a Mac the iPad is

attached to. Occasional minor hiccups but in general works

as expected

https://www.collaboraoffice.com/

Collabora Productivity

Thank you

Tor Lillqvist
tml@collabora.com @TorLillqvist

“The man who prays is the one who thinks that god has arranged matters all wrong, but
who also thinks that he can instruct god how to put them right.”

—Christopher Hitchens, Mortality

https://www.goodreads.com/work/quotes/18446960

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

