
1
LibreOffice Aarhus 2015 Conference Presentation

Effective Bisection and Bibisection

Matthew Francis

Overview

Introduction to bisection and bibisection
How to bibisect effectively

Preparation
Execution
Results

Questions

3
LibreOffice Aarhus 2015 Conference Presentation

What is (bi)bisection?

A quick introduction

What is bisection?

Bisection is a way to identify which commit introduced a bug
without testing every single commit

Using the “git bisect” command
A number of commits must still be tested
Each must be built from source

Binary bisection (“bibisection”) is a way to do the same thing
faster

We provide you with pre-built binaries, making it
unnecessary to build from source each time

What is bisection?

How our git repository is structured

Master

Rele
as

e
br

an
ch

fo
r v

er
sio

n
x.y

Release x.y.1

Release x.y.0

Epoch

Branch
point

What is bisection?

How many commits are made in a typical release?
4.1: 10064
4.2: 12147
4.3: 14208
4.4: 10932
5.0: 9732 (10010 including merged branches)

What is bisection?

How does bisection work?
Starting with a known good and known bad commit, we
perform a binary search for the first bad commit

What is bisection?

How does bisection work?
Each time, we test the commit in the middle of the latest
known good and earliest known bad

What is bisection?

How does bisection work?
Approximately half the commits in the remaining range can
be eliminated on each test

Master

Good Bad?

What is bisection?

How does bisection work?
This allows us to avoid testing most commits

Master

Good Bad?

This illustrates why git tells you “roughly N steps”
are remaining – depending on whether this commit
tests “good” or “bad”, there may be an extra step

What is bisection?

How does bisection work?
After just a few tests, a single commit is identified

Master

Good Bad

Bug introduced
here

What is bibisection?

Bibisection makes bisection faster
We provide you with a special git repository which contains pre-built
binaries
No more need to spend all day compiling
A bibisect repository is at least several gigabytes in size

But you only have to download it once
Bugs can be bisected in minutes rather than hours

What is bibisection?

The original kind of bibisect repository was sparse
Sparse bibisect repositories do not cover every source commit

Some contain 1 build for every N source commits, for instance
1 in 64 source commits
Some contain 1 build per day regardless of how many actual
source commits occurred

Most sparse repositories are now obsolete, but a few are still
useful

The “43all” repository covers some old periods of development
which are not currently contained in any other repository
The “daily dbgutil” repository provides daily builds of current
master

What is bibisection?

Sparse bibisect
→ One bibisect every several source commits

Bibisect

What is bibisection?

Most recently built bibisect repositories are fine-grained
Fine-grained bibisect attempts to cover every source commit

Some commits don't compile; these are still excluded
Fine-grained repositories for recent master epochs are built from
clean each time

The Linux 44max and 50max repositories have been built this way
This gives the greatest confidence that the result of a bibisect
identifies the right commit

What is bibisection?

Fine-grained bibisect
→ One bibisect commit per source commit

Bibisect

What is bibisection?

Some fine-grained repositories for older epochs have been built
incrementally

The Linux 41max, 42max and 43max repositories have been built
this way
Each epoch takes about 1/4 the time to build that it would do from
clean (about one week of build time rather than one month for each
epoch)
This has allowed some remaining older regressions to be tracked
down cheaply
The results from these repositories should be treated with care, as
build system dependency errors may cause them to be imprecise.
Double-check that the commit pointed to is plausible

What is bibisection?

Bibisect coverage (as of September 2015)

What is bibisection?

What doesn't bibisect cover?
Very old commits between LibreOffice 3.3 and 3.5
Source commits on the release branches (with the
exception of the “releases” repository)

Almost all regressions are first introduced on master
Commits on release branches should consist only of
bugfixes which have been backported from an existing
commit on master
A few bugs have occurred on a release branch alone,
but this is very rare

Source commits on the release branches may be covered
in future

What is bibisection?

Which of these bibisect repositories should I use?
Use the fine-grained repositories if possible

Linux 41max, 42max, 43max, 44max, 50max
If a bug is before or after the range covered by the above,
use a suitable sparse repository

Linux 43all, daily dbgutil
There are other historical repositories, but ignore them
Don't use the “releases” repository for bibisection

Except to show that a bug predates LibreOffice

21
LibreOffice Aarhus 2015 Conference Presentation

How to bibisect effectively

How to bibisect effectively

What does “effective” mean?
Identifying either a single commit or a small range by a
single person
Forwarding the bug to that person

Ideally while it's still recent enough for them to know and
care about

If a single commit can't be identified, documenting what you
find about when a bug was introduced will still save other QA
and developers from wasting time repeating what you did

Preparation

Before starting:
Make sure you have solid reproduction steps, and can reproduce on
some version

If it's not clear enough from the bug report, comment the exact
steps you've worked out
If you can't reproduce at all, send the bug back for more
information (NEEDINFO)
Simplify the reproduction steps as much as possible – you will
have to perform them several times
If you have trouble reproducing, try near to the version the original
reporter used

Preparation

Before starting:
Make sure the bug is still present on master

Use the Linux daily dbgutil repo to check
Beware that occasionally the behaviour of dbgutil builds can be
different

If the bug was present before, but appears to have been fixed on
master, consider performing a reverse bibisect to find the commit
that fixed it

Sometimes bugs are fixed tangentially. It's good to check that a
fix has been applied to all currently supported releases

Preparation

More on simplifying reproduction steps:
If the original steps consist of doing several things to a document in
sequence, try to prepare a test document at the point just before the
bug occurs – and attach it to the bug if possible
If reproducing the bug requires running a macro, insert a form button
which executes it so you don't have to hunt through the menus/dialogs
for the macro each time
If the bug is about loading / saving in different file formats (e.g. loss of
formatting), use command line conversion
opt/program/soffice --headless –convert-to docx something.odt

Execution

Setting up the bibisect:
Select a commit that works and one that doesn't

Do actually check these
A single master epoch is usually a good range

i.e. a single fine-grained repo such as 44max or 50max
The same or a similar bug can be introduced several
times, but bisection will only reveal one instance
Picking a good range helps ensure you find the latest
instance of the bug, which will be the most useful to know

Execution

While you're bibisecting:
Take care to follow the reproduction steps you worked out
Sometimes you may find commits which can't be used at all,
or behave in some other way than before the bug or on
current master

Start by assuming that there are only a few of these, and
use “git bisect skip” to skip over them
If many commits must be skipped, split the work into two
tasks and start again

Pick any commit with the third behaviour (“skip”) between the “good” and
“bad” commits you started with

First bisect between “good” and “skip”

Then bisect between “skip” and “bad”

Comment both results on the bug

Dealing with the results

After finishing a bibisection:
Re-check the result!

It's very easy to bisect “good” when you meant “bad” and
vice versa
Occasionally you may find that a bug wasn't as reliably
reproducible as you thought

→ Assuming a single commit has been identified in a fine-grained
repository, checkout the “first bad” commit and retest that, then from
that position checkout HEAD~1 and retest that

Dealing with the results

What sorts of result are possible?
Fine-grained bibisect, single commit

→ The best sort! We can send it straight to the author

Fine-grained bibisect, range of skipped commits
Or when a source range couldn't be built
→ Maybe still OK – if all by one person. Otherwise equivalent to...

Sparse bibisect, single commit
Still a range of source commits really
→ Someone will still need to look at this more later

Sparse bibisect, range of skipped commits
→ Oh dear – extended build failure, the hardest to diagnose

Dealing with the results

If the result points at a single commit or several by one person:
Adjust the bug fields

Remove Whiteboard: bibisectRequest
Check whether the bug is a true regression, or was introduced
together with the feature it relates to

If it's a true regression, set the bug fields to include:
Whiteboard: bibisected
Keywords: bisected, regression

If the bug arrived together with its feature:
Whiteboard: bibisected implementationError
Keywords: bisected

Dealing with the results

If the result points at a single commit or several by one person:

Add a comment which identifies the source commit(s) in question

Cc: the original author on the bug

Note that “author” and “committer” may not be the same

Don't Cc: the bibisect repo builder – listed as the “author” of the
commit in the bibisect repo

→ Look at the “author” and “committer” in the body of the commit
message

Some commits are ported from OpenOffice. Don't try to contact the author
in this case (typically addresses @apache.org)

Just for this case, Cc: the committer instead

Not everybody uses the same email address in Bugzilla as they do to
commit with. If you type the author's name in the Cc: box, Bugzilla will show
you a list which should contain the correct address

A few occasional contributors don't have accounts on Bugzilla. If you can't
find a suitable email address, just note this in your comment

Dealing with the results

If the result points at a single commit or several by one person:
Provided that the result has been double-checked, and the
commit(s) identified could plausibly have introduced the bug,
there's no reason to include the output of “git bisect log”

It adds visual noise to the bug, and doesn't add much useful
information to the result

What if the results are incomplete?

If a single commit couldn't be identified:
I.e. the result is a set of skipped commits that aren't by a single
person, or
There was an extended build breakage, or
A sparse bibisect repository was used

Replace Whiteboard: bibisectRequest with Whiteboard: bibisected
Don't add Keywords: bisected

In this case, it's reasonable to append the “git bisect log” output in a
comment
Don't Cc: anybody

Unless you can read the corresponding source commits / commit
logs and identify a very likely commit

Reverse bisection

Sometimes it's useful to know the commit that fixed a bug
E.g. to check that it's been applied to the branches of all
currently supported releases

To find this, you have to bisect in reverse
“git bisect” doesn't like to search in reverse

→ Make the initial “good” commit of the search one that contains the
bug
→ Make the initial “bad” commit one in which it has been fixed

As you bisect, remember that “git bisect good” means “this
commit contains the bug”, and “git bisect bad” means “the
bug was fixed in this commit”

Repeat to yourself, “Fair is foul and foul is fair”

Git hints and tips

Using the 43all repository
Some commits contain files they shouldn't (parts of the user profile)
“git bisect good / bad” may refuse to continue because there are files
in the way
To fix this, from within the 43all directory, either:

Manually delete the files it complains about (slow, safe)
Or, run “git clean -dffx” (fast, hazardous)

Caution: this will delete all untracked files in the directory and
reset all others to their state in the repository

Git hints and tips

Use “git bisect visualize”

Shows information about the range of commits still to be tested
Useful to find the bounds of a range of skipped commits if
bisection ended that way

“git bisect log” unhelpfully lists the skipped commits in
random order

Needs to have “gitk” installed for graphical display

Git hints and tips

Git hints and tips

Moving forward in history
There's no simple way to move forward in history from a specific
commit in git, but you can use the following:

For the source repository and the daily dbgutil bibisect repo:
git checkout `git rev-list --topo-order HEAD..master | tail -1`

For other regular bibisect repositories:
git checkout `git rev-list --topo-order HEAD..latest | tail -1`

Useful when you want to quickly scrub backward / forward to re-
check a result
Make them into scripts or shell aliases

I call mine “gitforward” and “bbforward”

Further information

https://wiki.documentfoundation.org/QA/Bibisect
Freenode IRC channel #libreoffice-qa

https://wiki.documentfoundation.org/QA/Bibisect

Questions?

41
LibreOffice Aarhus 2015 Conference Presentation

All text and image content in this document is licensed under the Creative Commons Attribution-Share Alike 3.0 License
(unless otherwise specified). "LibreOffice" and "The Document Foundation" are registered trademarks. Their respective logos
and icons are subject to international copyright laws. The use of these therefore is subject to the trademark policy.

Thank you

http://creativecommons.org/licenses/by-sa/3.0/
http://wiki.documentfoundation.org/TradeMark_Policy

	Title
	Slide 2
	Section Header Example
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Final Slide Example

